# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ The entry point of inference server. (SRT = SGLang Runtime) This file implements HTTP APIs for the inference engine via fastapi. """ import asyncio import dataclasses import json import logging import multiprocessing as multiprocessing import os import threading import time from http import HTTPStatus from typing import AsyncIterator, Callable, Dict, Optional from fastapi import HTTPException, Body # Fix a bug of Python threading setattr(threading, "_register_atexit", lambda *args, **kwargs: None) from contextlib import asynccontextmanager import numpy as np import orjson import requests import uvicorn import uvloop from fastapi import FastAPI, File, Form, Request, UploadFile from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import ORJSONResponse, Response, StreamingResponse from sglang.srt.entrypoints.engine import _launch_subprocesses from sglang.srt.function_call_parser import FunctionCallParser from sglang.srt.managers.io_struct import ( CloseSessionReqInput, ConfigureLoggingReq, EmbeddingReqInput, GenerateReqInput, GetWeightsByNameReqInput, InitWeightsUpdateGroupReqInput, OpenSessionReqInput, ParseFunctionCallReq, ProfileReqInput, ReleaseMemoryOccupationReqInput, ResumeMemoryOccupationReqInput, SeparateReasoningReqInput, SetInternalStateReq, UpdateWeightFromDiskReqInput, UpdateWeightsFromDistributedReqInput, VertexGenerateReqInput, ) from sglang.srt.managers.tokenizer_manager import TokenizerManager from sglang.srt.metrics.func_timer import enable_func_timer from sglang.srt.openai_api.adapter import ( v1_batches, v1_cancel_batch, v1_chat_completions, v1_completions, v1_delete_file, v1_embeddings, v1_files_create, v1_retrieve_batch, v1_retrieve_file, v1_retrieve_file_content, ) from sglang.srt.openai_api.protocol import ModelCard, ModelList from sglang.srt.reasoning_parser import ReasoningParser from sglang.srt.server_args import ServerArgs from sglang.srt.utils import ( add_api_key_middleware, add_prometheus_middleware, delete_directory, kill_process_tree, set_uvicorn_logging_configs, ) from sglang.srt.warmup import execute_warmups from sglang.utils import get_exception_traceback from sglang.version import __version__ logger = logging.getLogger(__name__) asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) # Store global states @dataclasses.dataclass class _GlobalState: tokenizer_manager: TokenizerManager scheduler_info: Dict _global_state: Optional[_GlobalState] = None def set_global_state(global_state: _GlobalState): global _global_state _global_state = global_state @asynccontextmanager async def lifespan(fast_api_app: FastAPI): server_args: ServerArgs = fast_api_app.server_args if server_args.warmups is not None: await execute_warmups( server_args.warmups.split(","), _global_state.tokenizer_manager ) logger.info("Warmup ended") warmup_thread = getattr(fast_api_app, "warmup_thread", None) if warmup_thread is not None: warmup_thread.start() yield # Fast API app = FastAPI(lifespan=lifespan) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) HEALTH_CHECK_TIMEOUT = int(os.getenv("SGLANG_HEALTH_CHECK_TIMEOUT", 20)) ##### Native API endpoints ##### def load_model_tag(model_path): """ Read model information from tag.json; raise 404 if the file doesn't exist. """ tag_file = os.path.join(model_path, "tag.json") if not os.path.exists(tag_file): raise HTTPException(status_code=404, detail=f"tag.json not found in {model_path}") with open(tag_file, "r", encoding="utf-8") as f: return json.load(f) @app.get("/api/tags", response_class=ORJSONResponse) async def api_tags(): """ Read tag.json directly and return it; return 404 if the file doesn't exist. """ model_path = _global_state.tokenizer_manager.model_path # 模型目录 model_info = load_model_tag(model_path) return {"models": [model_info]} @app.get("/health") async def health() -> Response: """Check the health of the http server.""" return Response(status_code=200) @app.get("/health_generate") async def health_generate(request: Request) -> Response: """Check the health of the inference server by generating one token.""" sampling_params = {"max_new_tokens": 1, "temperature": 0.0} rid = f"HEALTH_CHECK_{time.time()}" if _global_state.tokenizer_manager.is_image_gen: raise NotImplementedError() elif _global_state.tokenizer_manager.is_generation: gri = GenerateReqInput( rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False, ) else: gri = EmbeddingReqInput( rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False ) async def gen(): async for _ in _global_state.tokenizer_manager.generate_request(gri, request): break tic = time.time() task = asyncio.create_task(gen()) while time.time() < tic + HEALTH_CHECK_TIMEOUT: await asyncio.sleep(1) if _global_state.tokenizer_manager.last_receive_tstamp > tic: task.cancel() _global_state.tokenizer_manager.rid_to_state.pop(rid, None) return Response(status_code=200) task.cancel() tic_time = time.strftime("%H:%M:%S", time.localtime(tic)) last_receive_time = time.strftime( "%H:%M:%S", time.localtime(_global_state.tokenizer_manager.last_receive_tstamp) ) logger.error( f"Health check failed. Server couldn't get a response from detokenizer for last " f"{HEALTH_CHECK_TIMEOUT} seconds. tic start time: {tic_time}. " f"last_heartbeat time: {last_receive_time}" ) _global_state.tokenizer_manager.rid_to_state.pop(rid, None) return Response(status_code=503) @app.get("/get_model_info") async def get_model_info(): """Get the model information.""" result = { "model_path": _global_state.tokenizer_manager.model_path, "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path, "is_generation": _global_state.tokenizer_manager.is_generation, } return result @app.get("/get_server_info") async def get_server_info(): internal_states = await _global_state.tokenizer_manager.get_internal_state() return { **dataclasses.asdict(_global_state.tokenizer_manager.server_args), **_global_state.scheduler_info, **internal_states, "version": __version__, } @app.api_route("/set_internal_state", methods=["POST", "PUT"]) async def set_internal_state(obj: SetInternalStateReq, request: Request): res = await _global_state.tokenizer_manager.set_internal_state(obj) return res # fastapi implicitly converts json in the request to obj (dataclass) @app.api_route("/generate", methods=["POST", "PUT"]) async def generate_request(obj: GenerateReqInput, request: Request): """Handle a generate request.""" if obj.stream: async def stream_results() -> AsyncIterator[bytes]: try: async for out in _global_state.tokenizer_manager.generate_request( obj, request ): yield b"data: " + orjson.dumps( out, option=orjson.OPT_NON_STR_KEYS ) + b"\n\n" except ValueError as e: out = {"error": {"message": str(e)}} logger.error(f"Error: {e}") yield b"data: " + orjson.dumps( out, option=orjson.OPT_NON_STR_KEYS ) + b"\n\n" yield b"data: [DONE]\n\n" return StreamingResponse( stream_results(), media_type="text/event-stream", background=_global_state.tokenizer_manager.create_abort_task(obj), ) else: try: ret = await _global_state.tokenizer_manager.generate_request( obj, request ).__anext__() return ret except ValueError as e: logger.error(f"Error: {e}") return _create_error_response(e) @app.api_route("/generate_from_file", methods=["POST"]) async def generate_from_file_request(file: UploadFile, request: Request): """Handle a generate request, this is purely to work with input_embeds.""" content = await file.read() input_embeds = json.loads(content.decode("utf-8")) obj = GenerateReqInput( input_embeds=input_embeds, sampling_params={ "repetition_penalty": 1.2, "temperature": 0.2, "max_new_tokens": 512, }, ) try: ret = await _global_state.generate_request(obj, request).__anext__() return ret except ValueError as e: logger.error(f"Error: {e}") return _create_error_response(e) @app.api_route("/encode", methods=["POST", "PUT"]) async def encode_request(obj: EmbeddingReqInput, request: Request): """Handle an embedding request.""" try: ret = await _global_state.tokenizer_manager.generate_request( obj, request ).__anext__() return ret except ValueError as e: return _create_error_response(e) @app.api_route("/classify", methods=["POST", "PUT"]) async def classify_request(obj: EmbeddingReqInput, request: Request): """Handle a reward model request. Now the arguments and return values are the same as embedding models.""" try: ret = await _global_state.tokenizer_manager.generate_request( obj, request ).__anext__() return ret except ValueError as e: return _create_error_response(e) @app.api_route("/flush_cache", methods=["GET", "POST"]) async def flush_cache(): """Flush the radix cache.""" _global_state.tokenizer_manager.flush_cache() return Response( content="Cache flushed.\nPlease check backend logs for more details. " "(When there are running or waiting requests, the operation will not be performed.)\n", status_code=200, ) @app.api_route("/start_profile", methods=["GET", "POST"]) async def start_profile_async(obj: Optional[ProfileReqInput] = None): """Start profiling.""" if obj is None: obj = ProfileReqInput() await _global_state.tokenizer_manager.start_profile( obj.output_dir, obj.num_steps, obj.activities ) return Response( content="Start profiling.\n", status_code=200, ) @app.api_route("/stop_profile", methods=["GET", "POST"]) async def stop_profile_async(): """Stop profiling.""" _global_state.tokenizer_manager.stop_profile() return Response( content="Stop profiling. This will take some time.\n", status_code=200, ) @app.api_route("/start_expert_distribution_record", methods=["GET", "POST"]) async def start_expert_distribution_record_async(): """Start recording the expert distribution. Clear the previous record if any.""" await _global_state.tokenizer_manager.start_expert_distribution_record() return Response( content="Start recording the expert distribution.\n", status_code=200, ) @app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"]) async def stop_expert_distribution_record_async(): """Stop recording the expert distribution.""" await _global_state.tokenizer_manager.stop_expert_distribution_record() return Response( content="Stop recording the expert distribution.\n", status_code=200, ) @app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"]) async def dump_expert_distribution_record_async(): """Dump expert distribution record.""" await _global_state.tokenizer_manager.dump_expert_distribution_record() return Response( content="Dump expert distribution record.\n", status_code=200, ) @app.post("/update_weights_from_disk") async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request): """Update the weights from disk inplace without re-launching the server.""" success, message, num_paused_requests = ( await _global_state.tokenizer_manager.update_weights_from_disk(obj, request) ) content = { "success": success, "message": message, "num_paused_requests": num_paused_requests, } if success: return ORJSONResponse( content, status_code=HTTPStatus.OK, ) else: return ORJSONResponse( content, status_code=HTTPStatus.BAD_REQUEST, ) @app.post("/init_weights_update_group") async def init_weights_update_group( obj: InitWeightsUpdateGroupReqInput, request: Request ): """Initialize the parameter update group.""" success, message = await _global_state.tokenizer_manager.init_weights_update_group( obj, request ) content = {"success": success, "message": message} if success: return ORJSONResponse(content, status_code=200) else: return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST) @app.post("/update_weights_from_distributed") async def update_weights_from_distributed( obj: UpdateWeightsFromDistributedReqInput, request: Request ): """Update model parameter from distributed online.""" success, message = ( await _global_state.tokenizer_manager.update_weights_from_distributed( obj, request ) ) content = {"success": success, "message": message} if success: return ORJSONResponse(content, status_code=200) else: return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST) @app.api_route("/get_weights_by_name", methods=["GET", "POST"]) async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request): """Get model parameter by name.""" try: ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request) if ret is None: return _create_error_response("Get parameter by name failed") else: return ORJSONResponse(ret, status_code=200) except Exception as e: return _create_error_response(e) @app.api_route("/release_memory_occupation", methods=["GET", "POST"]) async def release_memory_occupation( obj: ReleaseMemoryOccupationReqInput, request: Request ): """Release GPU memory occupation temporarily.""" try: await _global_state.tokenizer_manager.release_memory_occupation(obj, request) except Exception as e: return _create_error_response(e) @app.api_route("/resume_memory_occupation", methods=["GET", "POST"]) async def resume_memory_occupation( obj: ResumeMemoryOccupationReqInput, request: Request ): """Resume GPU memory occupation.""" try: await _global_state.tokenizer_manager.resume_memory_occupation(obj, request) except Exception as e: return _create_error_response(e) @app.api_route("/open_session", methods=["GET", "POST"]) async def open_session(obj: OpenSessionReqInput, request: Request): """Open a session, and return its unique session id.""" try: session_id = await _global_state.tokenizer_manager.open_session(obj, request) if session_id is None: raise Exception( "Failed to open the session. Check if a session with the same id is still open." ) return session_id except Exception as e: return _create_error_response(e) @app.api_route("/close_session", methods=["GET", "POST"]) async def close_session(obj: CloseSessionReqInput, request: Request): """Close the session.""" try: await _global_state.tokenizer_manager.close_session(obj, request) return Response(status_code=200) except Exception as e: return _create_error_response(e) @app.api_route("/configure_logging", methods=["GET", "POST"]) async def configure_logging(obj: ConfigureLoggingReq, request: Request): """Configure the request logging options.""" _global_state.tokenizer_manager.configure_logging(obj) return Response(status_code=200) @app.post("/parse_function_call") async def parse_function_call_request(obj: ParseFunctionCallReq, request: Request): """ A native API endpoint to parse function calls from a text. """ # 1) Initialize the parser based on the request body parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser) # 2) Call the non-stream parsing method (non-stream) normal_text, calls = parser.parse_non_stream(obj.text) # 3) Organize the response content response_data = { "normal_text": normal_text, "calls": [ call.model_dump() for call in calls ], # Convert pydantic objects to dictionaries } return ORJSONResponse(content=response_data, status_code=200) @app.post("/separate_reasoning") async def separate_reasoning_request(obj: SeparateReasoningReqInput, request: Request): """ A native API endpoint to separate reasoning from a text. """ # 1) Initialize the parser based on the request body parser = ReasoningParser(model_type=obj.reasoning_parser) # 2) Call the non-stream parsing method (non-stream) reasoning_text, normal_text = parser.parse_non_stream(obj.text) # 3) Organize the response content response_data = { "reasoning_text": reasoning_text, "text": normal_text, } return ORJSONResponse(content=response_data, status_code=200) ##### OpenAI-compatible API endpoints ##### @app.post("/v1/completions") async def openai_v1_completions(raw_request: Request): return await v1_completions(_global_state.tokenizer_manager, raw_request) @app.post("/v1/chat/completions") async def openai_v1_chat_completions(raw_request: Request): return await v1_chat_completions(_global_state.tokenizer_manager, raw_request) @app.post("/v1/embeddings", response_class=ORJSONResponse) async def openai_v1_embeddings(raw_request: Request): response = await v1_embeddings(_global_state.tokenizer_manager, raw_request) return response @app.get("/v1/models", response_class=ORJSONResponse) def available_models(): """Show available models.""" served_model_names = [_global_state.tokenizer_manager.served_model_name] model_cards = [] for served_model_name in served_model_names: model_cards.append( ModelCard( id=served_model_name, root=served_model_name, max_model_len=_global_state.tokenizer_manager.model_config.context_len, ) ) return ModelList(data=model_cards) @app.post("/v1/files") async def openai_v1_files(file: UploadFile = File(...), purpose: str = Form("batch")): return await v1_files_create( file, purpose, _global_state.tokenizer_manager.server_args.file_storage_path ) @app.delete("/v1/files/{file_id}") async def delete_file(file_id: str): # https://platform.openai.com/docs/api-reference/files/delete return await v1_delete_file(file_id) @app.post("/v1/batches") async def openai_v1_batches(raw_request: Request): return await v1_batches(_global_state.tokenizer_manager, raw_request) @app.post("/v1/batches/{batch_id}/cancel") async def cancel_batches(batch_id: str): # https://platform.openai.com/docs/api-reference/batch/cancel return await v1_cancel_batch(_global_state.tokenizer_manager, batch_id) @app.get("/v1/batches/{batch_id}") async def retrieve_batch(batch_id: str): return await v1_retrieve_batch(batch_id) @app.get("/v1/files/{file_id}") async def retrieve_file(file_id: str): # https://platform.openai.com/docs/api-reference/files/retrieve return await v1_retrieve_file(file_id) @app.get("/v1/files/{file_id}/content") async def retrieve_file_content(file_id: str): # https://platform.openai.com/docs/api-reference/files/retrieve-contents return await v1_retrieve_file_content(file_id) ## SageMaker API @app.get("/ping") async def sagemaker_health() -> Response: """Check the health of the http server.""" return Response(status_code=200) @app.post("/invocations") async def sagemaker_chat_completions(raw_request: Request): return await v1_chat_completions(_global_state.tokenizer_manager, raw_request) ## Vertex AI API @app.post(os.environ.get("AIP_PREDICT_ROUTE", "/vertex_generate")) async def vertex_generate(vertex_req: VertexGenerateReqInput, raw_request: Request): if not vertex_req.instances: return [] inputs = {} for input_key in ("text", "input_ids", "input_embeds"): if vertex_req.instances[0].get(input_key): inputs[input_key] = [ instance.get(input_key) for instance in vertex_req.instances ] break image_data = [ instance.get("image_data") for instance in vertex_req.instances if instance.get("image_data") is not None ] or None req = GenerateReqInput( **inputs, image_data=image_data, **(vertex_req.parameters or {}), ) ret = await generate_request(req, raw_request) return ORJSONResponse({"predictions": ret}) def _create_error_response(e): return ORJSONResponse( {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST ) def launch_server( server_args: ServerArgs, pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None, launch_callback: Optional[Callable[[], None]] = None, ): """ Launch SRT (SGLang Runtime) Server. The SRT server consists of an HTTP server and an SRT engine. - HTTP server: A FastAPI server that routes requests to the engine. - The engine consists of three components: 1. TokenizerManager: Tokenizes the requests and sends them to the scheduler. 2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager. 3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager. Note: 1. The HTTP server, Engine, and TokenizerManager both run in the main process. 2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library. """ tokenizer_manager, scheduler_info = _launch_subprocesses(server_args=server_args) set_global_state( _GlobalState( tokenizer_manager=tokenizer_manager, scheduler_info=scheduler_info, ) ) # Add api key authorization if server_args.api_key: add_api_key_middleware(app, server_args.api_key) # Add prometheus middleware if server_args.enable_metrics: add_prometheus_middleware(app) enable_func_timer() # Send a warmup request - we will create the thread launch it # in the lifespan after all other warmups have fired. warmup_thread = threading.Thread( target=_wait_and_warmup, args=( server_args, pipe_finish_writer, _global_state.tokenizer_manager.image_token_id, launch_callback, ), ) app.warmup_thread = warmup_thread try: # Update logging configs set_uvicorn_logging_configs() app.server_args = server_args # Listen for HTTP requests uvicorn.run( app, host=server_args.host, port=server_args.port, log_level=server_args.log_level_http or server_args.log_level, timeout_keep_alive=5, loop="uvloop", ) finally: warmup_thread.join() def _wait_and_warmup( server_args: ServerArgs, pipe_finish_writer: Optional[multiprocessing.connection.Connection], image_token_text: str, launch_callback: Optional[Callable[[], None]] = None, ): headers = {} url = server_args.url() if server_args.api_key: headers["Authorization"] = f"Bearer {server_args.api_key}" # Wait until the server is launched success = False for _ in range(120): time.sleep(1) try: res = requests.get(url + "/get_model_info", timeout=5, headers=headers) assert res.status_code == 200, f"{res=}, {res.text=}" success = True break except (AssertionError, requests.exceptions.RequestException): last_traceback = get_exception_traceback() pass if not success: if pipe_finish_writer is not None: pipe_finish_writer.send(last_traceback) logger.error(f"Initialization failed. warmup error: {last_traceback}") kill_process_tree(os.getpid()) return model_info = res.json() # Send a warmup request request_name = "/generate" if model_info["is_generation"] else "/encode" max_new_tokens = 8 if model_info["is_generation"] else 1 json_data = { "sampling_params": { "temperature": 0, "max_new_tokens": max_new_tokens, }, } if server_args.skip_tokenizer_init: json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)] # TODO Workaround the bug that embedding errors for list of size 1 if server_args.dp_size == 1: json_data["input_ids"] = json_data["input_ids"][0] else: json_data["text"] = ["The capital city of France is"] * server_args.dp_size # TODO Workaround the bug that embedding errors for list of size 1 if server_args.dp_size == 1: json_data["text"] = json_data["text"][0] # Debug dumping if server_args.debug_tensor_dump_input_file: json_data.pop("text", None) json_data["input_ids"] = np.load( server_args.debug_tensor_dump_input_file ).tolist() json_data["sampling_params"]["max_new_tokens"] = 0 try: res = requests.post( url + request_name, json=json_data, headers=headers, timeout=600, ) assert res.status_code == 200, f"{res}" except Exception: last_traceback = get_exception_traceback() if pipe_finish_writer is not None: pipe_finish_writer.send(last_traceback) logger.error(f"Initialization failed. warmup error: {last_traceback}") kill_process_tree(os.getpid()) return # Debug print # logger.info(f"{res.json()=}") logger.info("The server is fired up and ready to roll!") if pipe_finish_writer is not None: pipe_finish_writer.send("ready") if server_args.delete_ckpt_after_loading: delete_directory(server_args.model_path) if server_args.debug_tensor_dump_input_file: kill_process_tree(os.getpid()) if launch_callback is not None: launch_callback()