import json import logging import re from abc import ABC, abstractmethod from dataclasses import dataclass from json import JSONDecodeError, JSONDecoder from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type import partial_json_parser from partial_json_parser.core.exceptions import MalformedJSON from partial_json_parser.core.options import Allow from pydantic import BaseModel from sglang.srt.openai_api.protocol import ( StructuralTagResponseFormat, StructuresResponseFormat, Tool, ) logger = logging.getLogger(__name__) TOOLS_TAG_LIST = [ "<|plugin|>", "", "<|python_tag|>", "[TOOL_CALLS]", ] class ToolCallItem(BaseModel): """Simple encapsulation of the parsed ToolCall result for easier usage in streaming contexts.""" tool_index: int name: Optional[str] = None parameters: str # JSON string def _find_common_prefix(s1: str, s2: str) -> str: prefix = "" min_length = min(len(s1), len(s2)) for i in range(0, min_length): if s1[i] == s2[i]: prefix += s1[i] else: break return prefix def _partial_json_loads(input_str: str, flags: Allow) -> Tuple[Any, int]: try: return (partial_json_parser.loads(input_str, flags), len(input_str)) except JSONDecodeError as e: if "Extra data" in e.msg: dec = JSONDecoder() return dec.raw_decode(input_str) raise def _is_complete_json(input_str: str) -> bool: try: json.loads(input_str) return True except JSONDecodeError: return False class StreamingParseResult: """Result of streaming incremental parsing.""" def __init__( self, normal_text: str = "", calls: Optional[List[ToolCallItem]] = None ): self.normal_text = normal_text self.calls = calls or [] @dataclass class StructureInfo: begin: str end: str trigger: str _GetInfoFunc = Callable[[str], StructureInfo] """ helper alias of function ususally it is a function that takes a name string and returns a StructureInfo object, which can be used to construct a structural_tag object """ class BaseFormatDetector(ABC): """Base class providing two sets of interfaces: one-time and streaming incremental.""" def __init__(self): # initialize properties used for state when parsing tool calls in self._buffer = "" # streaming mode self.prev_tool_call_arr: List[Dict] = [] self.current_tool_id: int = -1 self.current_tool_name_sent: bool = False self.streamed_args_for_tool: List[str] = ( [] ) # map what has been streamed for each tool so far to a list self.bot_token = "" self.eot_token = "" def parse_base_json(self, action: Any, tools: List[Tool]) -> List[ToolCallItem]: tool_indices = { tool.function.name: i for i, tool in enumerate(tools) if tool.function.name } if not isinstance(action, list): action = [action] results = [] for act in action: name = act.get("name") if name and name in tool_indices: results.append( ToolCallItem( tool_index=tool_indices[name], name=name, parameters=json.dumps( act.get("parameters") or act.get("arguments", {}), ensure_ascii=False, ), ) ) else: logger.warning(f"Model attempted to call undefined function: {name}") return results @abstractmethod def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult: """ Parses the text in one go. Returns success=True if the format matches, otherwise False. Note that leftover_text here represents "content that this parser will not consume further". """ action = json.loads(text) return StreamingParseResult(calls=self.parse_base_json(action, tools)) def parse_streaming_increment( self, new_text: str, tools: List[Tool] ) -> StreamingParseResult: """ Streaming incremental parsing with tool validation. """ # Append new text to buffer self._buffer += new_text current_text = self._buffer if not (self.bot_token in current_text or current_text.startswith("{")): self._buffer = "" if self.eot_token in new_text: new_text = new_text.replace(self.eot_token, "") return StreamingParseResult(normal_text=new_text) # Build tool indices if not already built if not hasattr(self, "_tool_indices"): self._tool_indices = { tool.function.name: i for i, tool in enumerate(tools) if tool.function and tool.function.name } flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR try: tool_call_arr = [] is_complete = [] try: start_idx = ( len(self.bot_token) if current_text.startswith(self.bot_token) else 0 ) while start_idx < len(current_text): (obj, end_idx) = _partial_json_loads( current_text[start_idx:], flags ) is_complete.append( _is_complete_json(current_text[start_idx : start_idx + end_idx]) ) start_idx += end_idx + len("; ") # Validate tool name if present if "name" in obj and obj["name"] not in self._tool_indices: # Invalid tool name - reset state self._buffer = "" self.current_tool_id = -1 self.current_tool_name_sent = False if self.streamed_args_for_tool: self.streamed_args_for_tool.pop() return StreamingParseResult() # Handle parameters/arguments consistency if "parameters" in obj: assert ( "arguments" not in obj ), "model generated both parameters and arguments" obj["arguments"] = obj["parameters"] tool_call_arr.append(obj) except MalformedJSON: return StreamingParseResult() if len(tool_call_arr) == 0: return StreamingParseResult() current_tool_call: Dict = ( tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {} ) # Handle new tool in array if len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1: if self.current_tool_id >= 0: cur_arguments = current_tool_call.get("arguments") if cur_arguments: cur_args_json = json.dumps(cur_arguments) sent = len(self.streamed_args_for_tool[self.current_tool_id]) argument_diff = cur_args_json[sent:] res = StreamingParseResult( calls=[ ToolCallItem( tool_index=self.current_tool_id, name="", parameters=argument_diff, ) ], ) self.streamed_args_for_tool[ self.current_tool_id ] += argument_diff else: res = StreamingParseResult() else: res = StreamingParseResult() self.current_tool_id = len(tool_call_arr) - 1 self.current_tool_name_sent = False self.streamed_args_for_tool.append("") return res # Handle tool name elif not self.current_tool_name_sent: function_name = current_tool_call.get("name") if function_name and function_name in self._tool_indices: res = StreamingParseResult( calls=[ ToolCallItem( tool_index=self._tool_indices[function_name], name=function_name, parameters="", ) ], ) self.current_tool_name_sent = True else: res = StreamingParseResult() # Handle streaming arguments else: cur_arguments = current_tool_call.get("arguments") res = StreamingParseResult() if cur_arguments: sent = len(self.streamed_args_for_tool[self.current_tool_id]) cur_args_json = json.dumps(cur_arguments) prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get( "arguments" ) argument_diff = None if is_complete[self.current_tool_id]: argument_diff = cur_args_json[sent:] self._buffer = "" self.prev_tool_call_arr[self.current_tool_id].clear() self.current_tool_name_sent = False self.streamed_args_for_tool[self.current_tool_id] = "" elif prev_arguments: prev_args_json = json.dumps(prev_arguments) if cur_args_json != prev_args_json: prefix = _find_common_prefix(prev_args_json, cur_args_json) argument_diff = prefix[sent:] if argument_diff is not None: res = StreamingParseResult( calls=[ ToolCallItem( tool_index=self.current_tool_id, parameters=argument_diff, ) ], ) if not is_complete[self.current_tool_id]: self.streamed_args_for_tool[ self.current_tool_id ] += argument_diff self.prev_tool_call_arr = tool_call_arr return res except Exception as e: logger.error(f"Error in parse_streaming_increment: {e}") return StreamingParseResult() @abstractmethod def has_tool_call(self, text: str) -> bool: raise NotImplementedError() @abstractmethod def structure_info(self) -> _GetInfoFunc: raise NotImplementedError() class Qwen25Detector(BaseFormatDetector): """ Detector for Qwen 2.5 models. Assumes function call format: {"name":"xxx", "arguments":{...}} """ def __init__(self): """ Initializes the detector with necessary state variables. """ super().__init__() self.bot_token = "" self.eot_token = "" def has_tool_call(self, text: str) -> bool: """Check if the text contains a Qwen 2.5 format tool call.""" return self.bot_token in text def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult: """ One-time parsing: Detects and parses tool calls in the provided text. :param text: The complete text to parse. :param tools: List of available tools. :return: ParseResult indicating success or failure, consumed text, leftover text, and parsed calls. """ idx = text.find(self.bot_token) normal_text = text[:idx].strip() if idx != -1 else text if self.bot_token not in text: return StreamingParseResult(normal_text=normal_text, calls=[]) pattern = rf"{self.bot_token}(.*?){self.eot_token}" match_result_list = re.findall(pattern, text, re.DOTALL) calls = [] for match_result in match_result_list: match_result = json.loads(match_result) calls.extend(self.parse_base_json(match_result, tools)) return StreamingParseResult(normal_text=normal_text, calls=calls) def structure_info(self) -> _GetInfoFunc: return lambda name: StructureInfo( begin='{"name":"' + name + '", "arguments":', end="}", trigger="", ) class MistralDetector(BaseFormatDetector): """ Detector for Mistral models. Assumes function call format: <|action_start|><|plugin|>{"name":"xxx", "arguments":{...}}<|action_end|> """ def __init__(self): """ Initializes the detector with necessary state variables. """ super().__init__() self.bot_token = "[TOOL_CALLS] [" self.tool_call_regex = re.compile(r"\[{.*}\]", re.DOTALL) def has_tool_call(self, text: str) -> bool: """Check if the text contains a Mistral format tool call.""" return self.bot_token in text def _clean_text(self, text: str) -> str: """ clean text to only leave ''[TOOL_CALLS] [{"name": xxx, "arguments": {xxx}}]' for example, text = '[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"location": "Boston, MA", "unit": "fahrenheit"}}]\n\nToday\'s weather in Boston is :{function call result} (in Fahrenheit)\n\nIf you prefer Celsius, please let me know.' return '[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"location": "Boston, MA", "unit": "fahrenheit"}}]' The key pattern is [TOOL_CALLS] [...] """ find_results = re.findall(r"\[TOOL_CALLS\] \[.*?\]", text, re.DOTALL) if len(find_results) > 0: return find_results[0] else: return "" def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult: """ One-time parsing: Detects and parses tool calls in the provided text. :param text: The complete text to parse. :param tools: List of available tools. :return: ParseResult indicating success or failure, consumed text, leftover text, and parsed calls. """ idx = text.find(self.bot_token) normal_text = text[:idx].strip() if idx != -1 else text text = self._clean_text(text) tool_content = text.replace("[TOOL_CALLS]", "").strip() raw_tool_calls = self.tool_call_regex.findall(tool_content) calls = [] if len(raw_tool_calls) > 0: raw_tool_call = raw_tool_calls[0] function_call_arr = json.loads(raw_tool_call) for match_result in function_call_arr: calls.extend(self.parse_base_json(match_result, tools)) return StreamingParseResult(normal_text=normal_text, calls=calls) def structure_info(self) -> _GetInfoFunc: return lambda name: StructureInfo( begin='[TOOL_CALLS] [{"name":"' + name + '", "arguments":', end="}]", trigger="[TOOL_CALLS]", ) class Llama32Detector(BaseFormatDetector): """ Detector for Llama 3.2 models. Assumes function call format: <|python_tag|>{"name":"xxx", "arguments":{...}} """ def __init__(self): super().__init__() self.bot_token = "<|python_tag|>" def has_tool_call(self, text: str) -> bool: """Check if the text contains a Llama 3.2 format tool call.""" # depending on the prompt format the Llama model may or may not # prefix the output with the <|python_tag|> token return "<|python_tag|>" in text or text.startswith("{") def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult: """Parse function calls from text, handling multiple JSON objects.""" if "<|python_tag|>" not in text and not text.startswith("{"): return StreamingParseResult(normal_text=text, calls=[]) if "<|python_tag|>" in text: normal_text, action_text = text.split("<|python_tag|>") else: normal_text, action_text = "", text # Split by semicolon and process each part json_parts = [part.strip() for part in action_text.split(";") if part.strip()] all_actions = [] for part in json_parts: try: # Parse each individual JSON object action = json.loads(part) all_actions.append(action) except json.JSONDecodeError as e: logger.warning(f"Failed to parse JSON part: {part}") logger.warning(f"JSON parse error: {str(e)}") continue calls = [] # Only process if we found valid JSON objects if all_actions: calls = self.parse_base_json(all_actions, tools) return StreamingParseResult(normal_text=normal_text, calls=calls) def structure_info(self) -> _GetInfoFunc: return lambda name: StructureInfo( begin='<|python_tag|>{"name":"' + name + '", "arguments":', end="}", trigger="<|python_tag|>", ) class MultiFormatParser: def __init__(self, detectors: List[BaseFormatDetector]): """ :param detectors: A series of available Detector instances passed in """ self.detectors = detectors def parse_once( self, text: str, tools: List[Tool] ) -> Tuple[str, list[ToolCallItem]]: """ One-time parsing: Loop through detectors until there are no new matches or text is exhausted Return: (final_text, all_calls) - final_text: The remaining text after parsing that was not consumed by any Detector (can be treated as normal text) - all_calls: All calls parsed by the Detectors """ final_calls = [] final_normal_text = text for detector in self.detectors: parsed_result = detector.detect_and_parse(text, tools) tool_call_list = parsed_result.calls if len(tool_call_list) > 0: # parsed successfully final_calls = tool_call_list final_normal_text = parsed_result.normal_text break # leftover_text is the normal text not consumed by any Detector return final_normal_text, final_calls def parse_streaming_increment( self, new_text: str, tools: List[Tool] ) -> Tuple[str, list[ToolCallItem]]: """ Streaming incremental parsing: Feed new_text to each detector's parse_streaming_increment and merge their produced normal_text/calls to return. (The logic here can be "priority-based" or "parallel parsing" based on your needs) """ final_normal_text = "" final_calls = [] for detector in self.detectors: sp_result = detector.parse_streaming_increment(new_text, tools) # Merge normal_text and calls # If one sp_result contains result call, this should be a successful parse # If one sp_result only contains normal_text, this can either be a successful # parse or it is not using the desired parsing tool. if sp_result.normal_text: final_normal_text = sp_result.normal_text if sp_result.calls: final_calls.extend(sp_result.calls) final_normal_text = sp_result.normal_text break return final_normal_text, final_calls class FunctionCallParser: """ In streaming scenarios, each time new_text is received, it calls multi_format_parser.parse_streaming_increment and returns the resulting normal_text and calls to the upper layer (or SSE). """ ToolCallParserEnum: Dict[str, Type[BaseFormatDetector]] = { "llama3": Llama32Detector, "qwen25": Qwen25Detector, "mistral": MistralDetector, } def __init__(self, tools: List[Tool], tool_call_parser: str): detectors = [] if tool_call_parser: detector_class = self.ToolCallParserEnum.get(tool_call_parser) if detector_class: detectors.append(detector_class()) else: raise ValueError(f"Unsupported tool_call_parser: {tool_call_parser}") else: raise ValueError("Tool Call Parser Not Given!") self.multi_format_parser = MultiFormatParser(detectors) self.tools = tools def has_tool_call(self, text: str) -> bool: """ Check if the given text contains a tool call in the format supported by this parser. This delegates to the detector's implementation. :param text: The text to check for tool calls :return: True if the text contains a tool call, False otherwise """ # Check all detectors in the multi_format_parser for detector in self.multi_format_parser.detectors: if detector.has_tool_call(text): return True return False def parse_non_stream(self, full_text: str) -> Tuple[str, list[ToolCallItem]]: """ Non-streaming call: one-time parsing """ full_normal_text, calls = self.multi_format_parser.parse_once( full_text, self.tools ) return full_normal_text, calls def parse_stream_chunk(self, chunk_text: str) -> Tuple[str, list[ToolCallItem]]: """ Streaming call: incremental parsing """ normal_text, calls = self.multi_format_parser.parse_streaming_increment( chunk_text, self.tools ) return normal_text, calls def structure_infos(self) -> List[_GetInfoFunc]: """ Returns a list of structure_info functions for each detector """ return [ detector.structure_info() for detector in self.multi_format_parser.detectors ] def get_structure_tag(self) -> StructuralTagResponseFormat: tool_structures: List[StructuresResponseFormat] = list() tool_trigger_set: Set[str] = set() for wrapper in self.structure_infos(): for tool in self.tools: function = tool.function name = function.name assert name is not None info = wrapper(name) # accept all if not strict, otherwise only accept the schema schema = function.parameters if function.strict else {} tool_structures.append( StructuresResponseFormat( begin=info.begin, schema=schema, # type: ignore end=info.end, ) ) tool_trigger_set.add(info.trigger) return StructuralTagResponseFormat( type="structural_tag", structures=tool_structures, triggers=list(tool_trigger_set), )