# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Fused operators for activation layers.""" import logging import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from sglang.srt.utils import is_cuda_available _is_cuda = is_cuda_available() if _is_cuda: from sgl_kernel import gelu_and_mul, gelu_tanh_and_mul, silu_and_mul from sglang.srt.custom_op import CustomOp from sglang.srt.distributed import ( divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.utils import set_weight_attrs logger = logging.getLogger(__name__) class SiluAndMul(CustomOp): def forward_native(self, x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 return F.silu(x[..., :d]) * x[..., d:] def forward_cuda(self, x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 output_shape = x.shape[:-1] + (d,) out = torch.empty(output_shape, dtype=x.dtype, device=x.device) silu_and_mul(x, out) return out class GeluAndMul(CustomOp): def __init__(self, approximate="tanh"): super().__init__() self.approximate = approximate def forward_native(self, x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:] def forward_cuda(self, x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 output_shape = x.shape[:-1] + (d,) out = torch.empty(output_shape, dtype=x.dtype, device=x.device) if self.approximate == "tanh": gelu_tanh_and_mul(x, out) elif self.approximate == "none": gelu_and_mul(x, out) else: raise RuntimeError("GeluAndMul only support tanh or none") return out class NewGELU(CustomOp): def forward_native(self, x: torch.Tensor) -> torch.Tensor: c = math.sqrt(2.0 / math.pi) return 0.5 * x * (1.0 + torch.tanh(c * (x + 0.044715 * torch.pow(x, 3.0)))) def forward_cuda(self, x: torch.Tensor) -> torch.Tensor: # TODO: Implement the CUDA kernel for NewGELU in sgl-kernel return self.forward_native(x) class QuickGELU(CustomOp): def forward_native(self, x: torch.Tensor) -> torch.Tensor: return x * torch.sigmoid(1.702 * x) def forward_cuda(self, x: torch.Tensor) -> torch.Tensor: # TODO(zhyncs): Implement the CUDA kernel for QuickGELU in sgl-kernel return self.forward_native(x) class ScaledActivation(nn.Module): """An activation function with post-scale parameters. This is used for some quantization methods like AWQ. """ def __init__( self, act_module: nn.Module, intermediate_size: int, input_is_parallel: bool = True, params_dtype: Optional[torch.dtype] = None, ): super().__init__() self.act = act_module self.input_is_parallel = input_is_parallel if input_is_parallel: tp_size = get_tensor_model_parallel_world_size() intermediate_size_per_partition = divide(intermediate_size, tp_size) else: intermediate_size_per_partition = intermediate_size if params_dtype is None: params_dtype = torch.get_default_dtype() self.scales = nn.Parameter( torch.empty(intermediate_size_per_partition, dtype=params_dtype) ) set_weight_attrs(self.scales, {"weight_loader": self.weight_loader}) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.act(x) / self.scales def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): param_data = param.data if self.input_is_parallel: tp_rank = get_tensor_model_parallel_rank() shard_size = param_data.shape[0] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(0, start_idx, shard_size) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) _ACTIVATION_REGISTRY = { "gelu": nn.GELU(), "gelu_pytorch_tanh": nn.GELU(approximate="tanh"), } def get_act_fn( act_fn_name: str, quant_config: Optional[QuantizationConfig] = None, intermediate_size: Optional[int] = None, input_is_parallel: bool = True, params_dtype: Optional[torch.dtype] = None, ) -> nn.Module: """Get an activation function by name.""" act_fn_name = act_fn_name.lower() if act_fn_name not in _ACTIVATION_REGISTRY: raise ValueError(f"Activation function {act_fn_name!r} is not supported.") act_fn = _ACTIVATION_REGISTRY[act_fn_name] if quant_config is not None and act_fn_name in quant_config.get_scaled_act_names(): if intermediate_size is None: raise ValueError( "intermediate_size must be specified for scaled " "activation functions." ) return ScaledActivation( act_fn, intermediate_size, input_is_parallel, params_dtype ) return act_fn if not _is_cuda: logger.info( "sgl-kernel is not available on Non-NV platforms. Fallback to other kernel libraries." ) from vllm.model_executor.layers.activation import GeluAndMul, SiluAndMul