# adapted from # https://github.com/vllm-project/vllm/blob/82a1b1a82b1fbb454c82a9ef95730b929c9b270c/vllm/model_executor/layers/pooler.py from dataclasses import dataclass from enum import IntEnum import torch import torch.nn as nn from sglang.srt.model_executor.model_runner import ForwardBatch class PoolingType(IntEnum): LAST = 0 @dataclass class EmbeddingPoolerOutput: embeddings: torch.Tensor class Pooler(nn.Module): """A layer that pools specific information from hidden states. This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Normalizes output if specified. 3. Returns structured results as `PoolerOutput`. Attributes: pooling_type: The type of pooling to use (LAST, AVERAGE, MAX). normalize: Whether to normalize the pooled data. """ def __init__(self, pooling_type: PoolingType, normalize: bool): super().__init__() self.pooling_type = pooling_type self.normalize = normalize def forward( self, hidden_states: torch.Tensor, forward_batch: ForwardBatch ) -> EmbeddingPoolerOutput: if self.pooling_type == PoolingType.LAST: last_token_indices = torch.cumsum(forward_batch.extend_seq_lens, dim=0) - 1 pooled_data = hidden_states[last_token_indices] else: raise ValueError(f"Invalid pooling type: {self.pooling_type}") if self.normalize: pooled_data = nn.functional.normalize(pooled_data, p=2, dim=1) return EmbeddingPoolerOutput(embeddings=pooled_data)