# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/kv_cache.py import logging import torch from sglang.srt.layers.quantization.base_config import ( QuantizationConfig, QuantizeMethodBase, ) from sglang.srt.utils import is_hip _is_hip = is_hip() logger = logging.getLogger(__name__) class BaseKVCacheMethod(QuantizeMethodBase): """ Quant method that adds `_k_scale` and `_v_scale` attributes to the Attention layer to support loading those scaling factors from checkpoints. The k/v_scale will be used to: - quantize k/v_cache entries before saving them to the cache - dequantize k/v_cache entries before fetching them from the cache :param quant_config: the appropriate QuantizationConfig """ def __init__(self, quant_config: QuantizationConfig): self.quant_config = quant_config def create_weights(self, layer: torch.nn.Module): """ Create "weight" (aka k_scale and v_scale) for an attention layer. """ # Initialize the KV cache scales to -1.0, which is an invalid value. # If the k/v_scale appears in the checkpoint, it will be # overwritten when loading weights. layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0), requires_grad=False) layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0), requires_grad=False) @classmethod def is_fp8_fnuz(cls) -> bool: # only device 0 is checked, this assumes MI300 platforms are homogeneous return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName def apply(self, layer: torch.nn.Module) -> torch.Tensor: raise RuntimeError(f"{self.__class__.__name__}.apply should not be called.") def process_weights_after_loading(self, layer: torch.nn.Module) -> None: # If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0 # regardless whether the kv-scale is available in the checkpoint. # No need to process kv scales after loading if we are going to # calculate them on the fly. if layer.kv_cache_dtype != "auto" and not layer.calculate_kv_scales: if layer.k_scale > 0.0 and layer.v_scale > 0.0: # We prefer to use separate k_scale and v_scale if present k_scale = layer.k_scale.to("cpu").tolist() v_scale = layer.v_scale.to("cpu").tolist() if _is_hip and self.is_fp8_fnuz(): k_scale *= 2 v_scale *= 2 elif layer.k_scale < 0.0 and layer.v_scale < 0.0: # If no scales were loaded (both scales are invalid negative # values), use the default value of 1.0 k_scale = 1.0 v_scale = 1.0 else: # If we find a single kv_scale in the checkpoint, we remap # kv_scale to k_scale during weight loading, and duplicate # k_scale to v_scale here assert layer.k_scale > 0.0 scale_to_duplicate = max(layer.k_scale, layer.v_scale) k_scale = scale_to_duplicate.to("cpu").tolist() v_scale = scale_to_duplicate.to("cpu").tolist() if _is_hip and self.is_fp8_fnuz(): k_scale *= 2 v_scale *= 2 if not isinstance(k_scale, float) or not isinstance(v_scale, float): raise ValueError( "Only support per-tensor scaling factor " "for fp8 KV cache" ) # These are used in the final Attention.forward() layer._k_scale.copy_(k_scale) layer._v_scale.copy_(v_scale) layer._k_scale_float = k_scale layer._v_scale_float = v_scale if k_scale == 1.0 and v_scale == 1.0 and "e5m2" not in layer.kv_cache_dtype: logger.warning( "Using KV cache scaling factor 1.0 for fp8_e4m3. This " "may cause accuracy issues. Please make sure k/v_scale " "scaling factors are available in the fp8 checkpoint." ) del layer.k_scale del layer.v_scale