# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Radix attention.""" from torch import nn from sglang.srt.model_executor.forward_batch_info import ForwardBatch class RadixAttention(nn.Module): """ The attention layer implementation. """ def __init__( self, num_heads: int, head_dim: int, scaling: float, num_kv_heads: int, layer_id: int, logit_cap: float = 0.0, v_head_dim: int = -1, sliding_window_size: int = -1, is_cross_attention: bool = False, prefix: str = "", ): super().__init__() self.tp_q_head_num = num_heads self.tp_k_head_num = num_kv_heads self.tp_v_head_num = num_kv_heads self.head_dim = head_dim self.qk_head_dim = head_dim self.v_head_dim = v_head_dim if v_head_dim != -1 else head_dim self.scaling = scaling self.layer_id = layer_id self.logit_cap = logit_cap self.sliding_window_size = sliding_window_size or -1 self.is_cross_attention = is_cross_attention self.k_scale = None self.v_scale = None def forward( self, q, k, v, forward_batch: ForwardBatch, save_kv_cache: bool = True, ): if k is not None: # For cross-layer sharing, kv can be None assert v is not None k = k.view(-1, self.tp_k_head_num, self.qk_head_dim) v = v.view(-1, self.tp_v_head_num, self.v_head_dim) return forward_batch.attn_backend.forward( q, k, v, self, forward_batch, save_kv_cache )