# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A tensor parallel worker.""" import logging import threading from typing import Optional, Tuple import torch from sglang.srt.configs.model_config import ModelConfig from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer from sglang.srt.layers.logits_processor import LogitsProcessorOutput from sglang.srt.managers.io_struct import ( GetWeightsByNameReqInput, InitWeightsUpdateGroupReqInput, UpdateWeightFromDiskReqInput, UpdateWeightsFromDistributedReqInput, UpdateWeightsFromTensorReqInput, ) from sglang.srt.managers.schedule_batch import ModelWorkerBatch, global_server_args_dict from sglang.srt.mem_cache.memory_pool import ReqToTokenPool, TokenToKVPoolAllocator from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.model_runner import ModelRunner from sglang.srt.server_args import ServerArgs from sglang.srt.utils import MultiprocessingSerializer, broadcast_pyobj, set_random_seed logger = logging.getLogger(__name__) class TpModelWorker: """A tensor parallel model worker.""" def __init__( self, server_args: ServerArgs, gpu_id: int, tp_rank: int, dp_rank: Optional[int], nccl_port: int, is_draft_worker: bool = False, req_to_token_pool: Optional[ReqToTokenPool] = None, token_to_kv_pool_allocator: Optional[TokenToKVPoolAllocator] = None, ): # Parse args self.tp_rank = tp_rank # Init model and tokenizer self.model_config = ModelConfig( ( server_args.model_path if not is_draft_worker else server_args.speculative_draft_model_path ), trust_remote_code=server_args.trust_remote_code, revision=server_args.revision, context_length=server_args.context_length, model_override_args=server_args.json_model_override_args, is_embedding=server_args.is_embedding, dtype=server_args.dtype, quantization=server_args.quantization, ) self.model_runner = ModelRunner( model_config=self.model_config, mem_fraction_static=server_args.mem_fraction_static, gpu_id=gpu_id, tp_rank=tp_rank, tp_size=server_args.tp_size, nccl_port=nccl_port, server_args=server_args, is_draft_worker=is_draft_worker, req_to_token_pool=req_to_token_pool, token_to_kv_pool_allocator=token_to_kv_pool_allocator, ) if server_args.skip_tokenizer_init: self.tokenizer = self.processor = None else: if self.model_config.is_multimodal: self.processor = get_processor( server_args.tokenizer_path, tokenizer_mode=server_args.tokenizer_mode, trust_remote_code=server_args.trust_remote_code, revision=server_args.revision, ) self.tokenizer = self.processor.tokenizer else: self.tokenizer = get_tokenizer( server_args.tokenizer_path, tokenizer_mode=server_args.tokenizer_mode, trust_remote_code=server_args.trust_remote_code, revision=server_args.revision, ) self.device = self.model_runner.device # Profile number of tokens self.max_total_num_tokens = self.model_runner.max_total_num_tokens self.max_prefill_tokens = server_args.max_prefill_tokens self.max_running_requests = min( ( self.max_total_num_tokens // 2 if server_args.max_running_requests is None else server_args.max_running_requests // (server_args.dp_size if server_args.enable_dp_attention else 1) ), self.model_runner.req_to_token_pool.size, ) self.max_req_len = min( self.model_config.context_len - 1, self.max_total_num_tokens - 1, ) self.max_req_input_len = self.max_req_len - 5 assert ( self.max_req_len > 0 and self.max_req_input_len > 0 ), "Memory pool size is too small" # Sync random seed across TP workers self.random_seed = broadcast_pyobj( [server_args.random_seed], self.tp_rank, self.model_runner.tp_group.cpu_group, )[0] set_random_seed(self.random_seed) # A reference make this class has the same member as TpModelWorkerClient self.worker = self def get_worker_info(self): return ( self.max_total_num_tokens, self.max_prefill_tokens, self.max_running_requests, self.max_req_len, self.max_req_input_len, self.random_seed, self.device, global_server_args_dict, self.model_runner.req_to_token_pool.size, self.model_runner.req_to_token_pool.max_context_len, self.model_runner.token_to_kv_pool.size, ) def get_pad_input_ids_func(self): return getattr(self.model_runner.model, "pad_input_ids", None) def get_tp_cpu_group(self): return self.model_runner.tp_group.cpu_group def get_attention_tp_cpu_group(self): return self.model_runner.attention_tp_group.cpu_group def get_memory_pool(self): return ( self.model_runner.req_to_token_pool, self.model_runner.token_to_kv_pool_allocator, ) def forward_batch_generation( self, model_worker_batch: ModelWorkerBatch, launch_done: Optional[threading.Event] = None, skip_sample: bool = False, ) -> Tuple[LogitsProcessorOutput, Optional[torch.Tensor]]: forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner) logits_output = self.model_runner.forward(forward_batch) if launch_done: launch_done.set() if skip_sample: next_token_ids = None else: next_token_ids = self.model_runner.sample(logits_output, model_worker_batch) return logits_output, next_token_ids def forward_batch_embedding(self, model_worker_batch: ModelWorkerBatch): forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner) logits_output = self.model_runner.forward(forward_batch) embeddings = logits_output.embeddings return embeddings def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput): success, message = self.model_runner.update_weights_from_disk( recv_req.model_path, recv_req.load_format ) return success, message def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput): success, message = self.model_runner.init_weights_update_group( recv_req.master_address, recv_req.master_port, recv_req.rank_offset, recv_req.world_size, recv_req.group_name, recv_req.backend, ) return success, message def update_weights_from_distributed( self, recv_req: UpdateWeightsFromDistributedReqInput ): success, message = self.model_runner.update_weights_from_distributed( recv_req.name, recv_req.dtype, recv_req.shape ) return success, message def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput): success, message = self.model_runner.update_weights_from_tensor( named_tensors=MultiprocessingSerializer.deserialize( recv_req.serialized_named_tensors[self.tp_rank] ), load_format=recv_req.load_format, ) return success, message def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput): parameter = self.model_runner.get_weights_by_name( recv_req.name, recv_req.truncate_size ) return parameter