# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/model_executor/model_loader/utils.py """Utilities for selecting and loading models.""" import contextlib from typing import Tuple, Type import torch from torch import nn from sglang.srt.configs.model_config import ModelConfig @contextlib.contextmanager def set_default_torch_dtype(dtype: torch.dtype): """Sets the default torch dtype to the given dtype.""" old_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) yield torch.set_default_dtype(old_dtype) def get_model_architecture(model_config: ModelConfig) -> Tuple[Type[nn.Module], str]: from sglang.srt.models.registry import ModelRegistry architectures = getattr(model_config.hf_config, "architectures", []) # Special handling for quantized Mixtral. # FIXME(woosuk): This is a temporary hack. mixtral_supported = ["fp8", "compressed-tensors", "gptq_marlin", "awq_marlin"] if ( model_config.quantization is not None and model_config.quantization not in mixtral_supported and "MixtralForCausalLM" in architectures ): architectures = ["QuantMixtralForCausalLM"] return ModelRegistry.resolve_model_cls(architectures) def get_architecture_class_name(model_config: ModelConfig) -> str: return get_model_architecture(model_config)[1]