# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from: # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/gemma.py#L1 """Inference-only Gemma model compatible with HuggingFace weights.""" from typing import Iterable, Optional, Tuple import torch from torch import nn from transformers import PretrainedConfig from sglang.srt.distributed import get_tensor_model_parallel_world_size from sglang.srt.layers.activation import GeluAndMul from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import default_weight_loader from sglang.srt.utils import add_prefix class GemmaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=add_prefix("gate_up_proj", prefix), ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("down_proj", prefix), ) self.act_fn = GeluAndMul("none") def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class GemmaAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, head_dim: int, layer_id: int = 0, max_position_embeddings: int = 8192, rope_theta: float = 10000, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, prefix=add_prefix("qkv_proj", prefix), ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("o_proj", prefix), ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=self.rope_theta, is_neox_style=True, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, prefix=add_prefix("attn", prefix), ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output, _ = self.o_proj(attn_output) return output class GemmaDecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size self.self_attn = GemmaAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, head_dim=config.head_dim, layer_id=layer_id, max_position_embeddings=config.max_position_embeddings, rope_theta=config.rope_theta, quant_config=quant_config, prefix=add_prefix("self_attn", prefix), ) self.mlp = GemmaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, quant_config=quant_config, prefix=add_prefix("mlp", prefix), ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, forward_batch=forward_batch, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class GemmaModel(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList( [ GemmaDecoderLayer( config, i, quant_config=quant_config, prefix=add_prefix(f"layers.{i}", prefix), ) for i in range(config.num_hidden_layers) ] ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds # Normalize the embedding by sqrt(hidden_size) hidden_states *= self.config.hidden_size**0.5 residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, forward_batch, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class GemmaForCausalLM(nn.Module): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", ] # Gemma does not apply LoRA to the embedding layer. embedding_modules = {} embedding_padding_modules = [] def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = GemmaModel( config, quant_config=quant_config, prefix=add_prefix("model", prefix) ) self.logits_processor = LogitsProcessor(config) @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) return self.logits_processor( input_ids, hidden_states, self.model.embed_tokens, forward_batch ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params = set() for name, loaded_weight in weights: for param_name, shard_name, shard_id in stacked_params_mapping: if shard_name not in name: continue name = name.replace(shard_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # lm_head is not used in vllm as it is tied with embed_token. # To prevent errors, skip loading lm_head.weight. if "lm_head.weight" in name: continue # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # GemmaRMSNorm is different from Llama's in that it multiplies # (1 + weight) to the output, instead of just weight. if "norm.weight" in name: loaded_weight += 1.0 param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) EntryClass = GemmaForCausalLM