# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from: # https://github.com/vllm-project/vllm/blob/56b325e977435af744f8b3dca7af0ca209663558/vllm/model_executor/models/gemma2.py from typing import Iterable, Optional, Set, Tuple import torch from torch import nn from transformers import PretrainedConfig from sglang.srt.distributed import get_tensor_model_parallel_world_size from sglang.srt.layers.activation import GeluAndMul from sglang.srt.layers.layernorm import GemmaRMSNorm from sglang.srt.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from sglang.srt.utils import add_prefix, make_layers # Aligned with HF's implementation, using sliding window inclusive with the last token # SGLang assumes exclusive def get_attention_sliding_window_size(config): return config.sliding_window - 1 class Gemma2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, hidden_activation: str, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=add_prefix("gate_up_proj", prefix), ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("down_proj", prefix), ) if not (hidden_act == hidden_activation == "gelu_pytorch_tanh"): raise ValueError( "Gemma2 uses `gelu_pytorch_tanh` as the hidden activation " "function. Please set `hidden_act` and `hidden_activation` to " "`gelu_pytorch_tanh`." ) self.act_fn = GeluAndMul() def forward(self, x: torch.Tensor) -> torch.Tensor: gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Gemma2Attention(nn.Module): def __init__( self, layer_id: int, config: PretrainedConfig, hidden_size: int, num_heads: int, num_kv_heads: int, head_dim: int, max_position_embeddings: int, rope_theta: float, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.layer_id = layer_id self.config = config self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = config.query_pre_attn_scalar**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=config.attention_bias, quant_config=quant_config, prefix=add_prefix("qkv_proj", prefix), ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=config.attention_bias, quant_config=quant_config, prefix=add_prefix("o_proj", prefix), ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=self.rope_theta, is_neox_style=True, ) use_sliding_window = layer_id % 2 == 0 and hasattr(config, "sliding_window") self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, logit_cap=self.config.attn_logit_softcapping, sliding_window_size=( get_attention_sliding_window_size(config) if use_sliding_window else None ), prefix=add_prefix("attn", prefix), ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output, _ = self.o_proj(attn_output) return output class Gemma2DecoderLayer(nn.Module): def __init__( self, layer_id: int, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size self.self_attn = Gemma2Attention( layer_id=layer_id, config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, head_dim=config.head_dim, max_position_embeddings=config.max_position_embeddings, rope_theta=config.rope_theta, quant_config=quant_config, prefix=add_prefix("self_attn", prefix), ) self.hidden_size = config.hidden_size self.mlp = Gemma2MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, hidden_activation=config.hidden_activation, quant_config=quant_config, prefix=add_prefix("mlp", prefix), ) self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GemmaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.pre_feedforward_layernorm = GemmaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.post_feedforward_layernorm = GemmaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, forward_batch=forward_batch, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, residual = self.pre_feedforward_layernorm( hidden_states, residual ) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) return hidden_states, residual class Gemma2Model(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = make_layers( config.num_hidden_layers, lambda idx, prefix: Gemma2DecoderLayer( layer_id=idx, config=config, quant_config=quant_config, ), prefix=add_prefix("layers", prefix), ) self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Normalize the embedding by sqrt(hidden_size) # The normalizer's data type should be downcasted to the model's # data type such as bfloat16, not float32. # See https://github.com/huggingface/transformers/pull/29402 normalizer = self.config.hidden_size**0.5 self.register_buffer("normalizer", torch.tensor(normalizer)) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=torch.float16) hidden_states *= normalizer residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, forward_batch, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class Gemma2ForCausalLM(nn.Module): # BitandBytes specific attributes default_bitsandbytes_target_modules = [ ".gate_proj.", ".down_proj.", ".up_proj.", ".q_proj.", ".k_proj.", ".v_proj.", ".o_proj.", ] bitsandbytes_stacked_params_mapping = { # shard_name, weight_name, index "q_proj": ("qkv_proj", 0), "k_proj": ("qkv_proj", 1), "v_proj": ("qkv_proj", 2), "gate_proj": ("gate_up_proj", 0), "up_proj": ("gate_up_proj", 1), } packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", ] # Gemma does not apply LoRA to the embedding layer. embedding_modules = {} embedding_padding_modules = [] supports_lora = True def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = Gemma2Model( config, quant_config, prefix=add_prefix("model", prefix) ) self.logits_processor = LogitsProcessor(config) @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) return self.logits_processor( input_ids, hidden_states, self.model.embed_tokens, forward_batch ) def get_hidden_dim(self, module_name): # return input_dim, output_dim if module_name in ["q_proj", "qkv_proj"]: return ( self.config.hidden_size, self.config.head_dim * self.config.num_attention_heads, ) elif module_name in ["o_proj"]: return ( self.config.head_dim * self.config.num_attention_heads, self.config.hidden_size, ) elif module_name in ["kv_proj"]: return ( self.config.hidden_size, self.config.head_dim * self.config.num_key_value_heads, ) elif module_name == "gate_up_proj": return self.config.hidden_size, self.config.intermediate_size elif module_name == "down_proj": return self.config.intermediate_size, self.config.hidden_size else: raise NotImplementedError() def get_module_name(self, name): params_mapping = { "q_proj": "qkv_proj", "k_proj": "qkv_proj", "v_proj": "qkv_proj", "gate_proj": "gate_up_proj", "up_proj": "gate_up_proj", } return params_mapping.get(name, name) def get_attention_sliding_window_size(self): return get_attention_sliding_window_size(self.config) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: Set[str] = set() for name, loaded_weight in weights: for param_name, shard_name, shard_id in stacked_params_mapping: if shard_name not in name: continue name = name.replace(shard_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # lm_head is not used in vllm as it is tied with embed_token. # To prevent errors, skip loading lm_head.weight. if "lm_head.weight" in name: continue # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) EntryClass = Gemma2ForCausalLM