# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from: # https://github.com/vllm-project/vllm/blob/07eb6f19f3b0ee9f7adf6eb689607028aa40bfd5/vllm/model_executor/models/gpt_bigcode.py """Inference-only GPTBigCode model compatible with HuggingFace weights.""" from typing import Iterable, Optional, Tuple import torch from torch import nn from transformers import GPTBigCodeConfig from sglang.srt.distributed import get_tensor_model_parallel_world_size from sglang.srt.layers.activation import get_act_fn from sglang.srt.layers.linear import ( ColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import default_weight_loader from sglang.srt.utils import add_prefix class GPTBigCodeAttention(nn.Module): def __init__( self, layer_id: int, config: GPTBigCodeConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size total_num_heads = config.num_attention_heads self.tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() assert total_num_heads % self.tensor_model_parallel_world_size == 0 self.num_heads = total_num_heads // self.tensor_model_parallel_world_size self.head_dim = self.hidden_size // total_num_heads self.scale = self.head_dim**-0.5 self.multi_query = config.multi_query if self.multi_query: total_num_kv_heads = 1 self.num_kv_heads = 1 else: total_num_kv_heads = total_num_heads self.num_kv_heads = self.num_heads self.kv_dim = self.head_dim * self.num_kv_heads self.c_attn = QKVParallelLinear( self.hidden_size, self.head_dim, total_num_heads, total_num_kv_heads, bias=True, quant_config=quant_config, prefix=add_prefix("c_attn", prefix), ) self.c_proj = RowParallelLinear( self.hidden_size, self.hidden_size, bias=True, quant_config=quant_config, prefix=add_prefix("c_proj", prefix), ) self.attn = RadixAttention( self.num_heads, self.head_dim, scaling=self.scale, num_kv_heads=self.num_kv_heads, layer_id=layer_id, prefix=add_prefix("attn", prefix), ) def forward( self, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.split( [ self.hidden_size // self.tensor_model_parallel_world_size, self.kv_dim, self.kv_dim, ], dim=-1, ) attn_output = self.attn(q, k, v, forward_batch) attn_output, _ = self.c_proj(attn_output) return attn_output class GPTBigMLP(nn.Module): def __init__( self, intermediate_size: int, config: GPTBigCodeConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() hidden_size = config.hidden_size self.c_fc = ColumnParallelLinear( hidden_size, intermediate_size, bias=True, quant_config=quant_config, prefix=add_prefix("c_fc", prefix), ) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=True, quant_config=quant_config, prefix=add_prefix("c_proj", prefix), ) self.act = get_act_fn( config.activation_function, quant_config, intermediate_size ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.c_proj(hidden_states) return hidden_states class GPTBigCodeBlock(nn.Module): def __init__( self, layer_id: int, config: GPTBigCodeConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPTBigCodeAttention( layer_id, config, quant_config, prefix=add_prefix("attn", prefix) ) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPTBigMLP( inner_dim, config, quant_config, prefix=add_prefix("mlp", prefix) ) def forward( self, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_output = self.attn( hidden_states=hidden_states, forward_batch=forward_batch ) # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states return hidden_states class GPTBigCodeModel(nn.Module): def __init__( self, config: GPTBigCodeConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config assert not config.add_cross_attention self.embed_dim = config.hidden_size lora_vocab = 0 self.vocab_size = config.vocab_size + lora_vocab self.wte = VocabParallelEmbedding( self.vocab_size, self.embed_dim, org_num_embeddings=config.vocab_size, prefix=add_prefix("wte", prefix), ) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.h = nn.ModuleList( [ GPTBigCodeBlock( i, config, quant_config, prefix=add_prefix(f"h.{i}", prefix) ) for i in range(config.num_hidden_layers) ] ) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds for i in range(len(self.h)): layer = self.h[i] hidden_states = layer(hidden_states, forward_batch) hidden_states = self.ln_f(hidden_states) return hidden_states class GPTBigCodeForCausalLM(nn.Module): packed_modules_mapping = {"c_attn": ["c_attn"]} supported_lora_modules = ["c_fc", "c_proj", "wte", "c_attn"] embedding_modules = { "wte": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = [] def __init__( self, config: GPTBigCodeConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.quant_config = quant_config self.transformer = GPTBigCodeModel( config, quant_config, prefix=add_prefix("transformer", prefix) ) self.lm_head = self.transformer.wte self.unpadded_vocab_size = config.vocab_size self.logits_processor = LogitsProcessor(config) @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, forward_batch) return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters(remove_duplicate=False)) for name, loaded_weight in weights: if "lm_head.weight" in name: continue if ".attn.bias" in name: # Skip attention mask. # NOTE: "c_attn.bias" should not be skipped. continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) # TODO (@robertgshaw2-neuralmagic): move to fp8 linear method if "c_attn.input_scale" in name or "c_attn.weight_scale" in name: weight_loader(param, loaded_weight, "q") weight_loader(param, loaded_weight, "k") weight_loader(param, loaded_weight, "v") else: weight_loader(param, loaded_weight) EntryClass = GPTBigCodeForCausalLM