# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1 """Inference-only LLaMA model compatible with HuggingFace weights.""" import logging from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union import torch from torch import nn from transformers import LlamaConfig from sglang.srt.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput from sglang.srt.layers.pooler import Pooler, PoolingType from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import ( default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name, ) from sglang.srt.utils import add_prefix, make_layers from sglang.utils import get_exception_traceback logger = logging.getLogger(__name__) class LlamaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=add_prefix("gate_up_proj", prefix), ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("down_proj", prefix), ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class LlamaAttention(nn.Module): def __init__( self, config: LlamaConfig, hidden_size: int, num_heads: int, num_kv_heads: int, layer_id: int = 0, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, rope_is_neox_style: bool = True, max_position_embeddings: int = 8192, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", bias: bool = False, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) # MistralConfig has an optional head_dim introduced by Mistral-Nemo self.head_dim = getattr( config, "head_dim", self.hidden_size // self.total_num_heads ) partial_rotary_factor = getattr(config, "partial_rotary_factor", 1) self.rotary_dim = int(partial_rotary_factor * self.head_dim) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=bias, quant_config=quant_config, prefix=add_prefix("qkv_proj", prefix), ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=bias, quant_config=quant_config, prefix=add_prefix("o_proj", prefix), ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.rotary_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=rope_is_neox_style, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, prefix=add_prefix("attn", prefix), ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output, _ = self.o_proj(attn_output) return output class LlamaDecoderLayer(nn.Module): def __init__( self, config: LlamaConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None ): rope_scaling["original_max_position_embeddings"] = ( config.original_max_position_embeddings ) rope_is_neox_style = getattr(config, "rope_is_neox_style", True) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) # Support llamafy/Qwen-Qwen2.5-7B-Instruct-llamafied with attention_bias # Support internlm/internlm-7b with bias attention_bias = getattr(config, "attention_bias", False) or getattr( config, "bias", False ) self.self_attn = LlamaAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, layer_id=layer_id, rope_theta=rope_theta, rope_scaling=rope_scaling, rope_is_neox_style=rope_is_neox_style, max_position_embeddings=max_position_embeddings, quant_config=quant_config, prefix=add_prefix("self_attn", prefix), bias=attention_bias, ) self.mlp = LlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=add_prefix("mlp", prefix), ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, forward_batch=forward_batch, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class LlamaModel(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=add_prefix("embed_tokens", prefix), ) self.layers = make_layers( config.num_hidden_layers, lambda idx, prefix: LlamaDecoderLayer( config=config, quant_config=quant_config, layer_id=idx, prefix=prefix ), prefix="model.layers", ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layers_to_capture = [] def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds residual = None aux_hidden_states = [] for i in range(len(self.layers)): if i in self.layers_to_capture: aux_hidden_states.append(hidden_states + residual) layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, forward_batch, residual, ) hidden_states, _ = self.norm(hidden_states, residual) if len(aux_hidden_states) == 0: return hidden_states return hidden_states, aux_hidden_states # If this function is called, it should always initialize KV cache scale # factors (or else raise an exception). Thus, handled exceptions should # make sure to leave KV cache scale factors in a known good (dummy) state def load_kv_cache_scales(self, quantization_param_path: str) -> None: tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() for layer_idx, scaling_factor in kv_cache_scales_loader( quantization_param_path, tp_rank, tp_size, self.config.num_hidden_layers, self.config.__class__.model_type, ): if not isinstance(self.layers[layer_idx], nn.Identity): layer_self_attn = self.layers[layer_idx].self_attn if hasattr(layer_self_attn.attn, "k_scale"): layer_self_attn.attn.k_scale = scaling_factor layer_self_attn.attn.v_scale = scaling_factor else: raise RuntimeError( "Self attention has no KV cache scaling " "factor attribute!" ) class LlamaForCausalLM(nn.Module): # BitandBytes specific attributes default_bitsandbytes_target_modules = [ ".gate_proj.", ".down_proj.", ".up_proj.", ".q_proj.", ".k_proj.", ".v_proj.", ".o_proj.", ] # in TP, these weights are partitioned along the column dimension (dim=-1) column_parallel_weights_modules = [".down_proj.", ".o_proj."] bitsandbytes_stacked_params_mapping = { # shard_name, weight_name, index "q_proj": ("qkv_proj", 0), "k_proj": ("qkv_proj", 1), "v_proj": ("qkv_proj", 2), "gate_proj": ("gate_up_proj", 0), "up_proj": ("gate_up_proj", 1), } def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = LlamaModel( config, quant_config=quant_config, prefix=add_prefix("model", prefix) ) # Llama 3.2 1B Instruct set tie_word_embeddings to True # Llama 3.1 8B Instruct set tie_word_embeddings to False if self.config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=add_prefix("lm_head", prefix), ) self.logits_processor = LogitsProcessor(config) self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True) self.stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] self.capture_aux_hidden_states = False @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, get_embedding: bool = False, ) -> LogitsProcessorOutput: aux_hidden_states = None if self.capture_aux_hidden_states: hidden_states, aux_hidden_states = self.model( input_ids, positions, forward_batch, input_embeds ) else: hidden_states = self.model( input_ids, positions, forward_batch, input_embeds ) if not get_embedding: return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states ) else: return self.pooler(hidden_states, forward_batch) def get_hidden_dim(self, module_name): # return input_dim, output_dim if module_name in ["q_proj", "o_proj", "qkv_proj"]: return self.config.hidden_size, self.config.hidden_size elif module_name in ["kv_proj"]: return self.config.hidden_size, self.config.hidden_size // ( self.config.num_attention_heads // self.config.num_key_value_heads ) elif module_name == "gate_up_proj": return self.config.hidden_size, self.config.intermediate_size elif module_name == "down_proj": return self.config.intermediate_size, self.config.hidden_size else: raise NotImplementedError() def get_module_name(self, name): params_mapping = { "q_proj": "qkv_proj", "k_proj": "qkv_proj", "v_proj": "qkv_proj", "gate_proj": "gate_up_proj", "up_proj": "gate_up_proj", } return params_mapping.get(name, name) def get_module_name_from_weight_name(self, name): for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping: if weight_name in name: return ( name.replace(weight_name, param_name)[: -len(".weight")], num_shard, ) return name[: -len(".weight")], 1 def get_num_params(self): params_dict = dict(self.named_parameters()) return len(params_dict) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name or "projector" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue if name.startswith("model.vision_tower") and name not in params_dict: continue if self.config.tie_word_embeddings and "lm_head.weight" in name: continue # Handle FP8 kv-scale remapping if "scale" in name: name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip loading kv_scale from ckpts towards new design. if name.endswith(".kv_scale") and name not in params_dict: continue if name in params_dict.keys(): param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) else: logger.warning(f"Parameter {name} not found in params_dict") def get_weights_by_name( self, name: str, truncate_size: int = 100, tp_size: int = 1 ) -> Optional[torch.Tensor]: """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face. Only used for unit test with an unoptimized performance. For optimized performance, please use torch.save and torch.load. """ try: if name == "lm_head.weight" and self.config.tie_word_embeddings: logger.info( "word embedding is tied for this model, return embed_tokens.weight as lm_head.weight." ) return ( self.model.embed_tokens.weight.cpu() .to(torch.float32) .numpy() .tolist()[:truncate_size] ) mapped_name = name mapped_shard_id = None for param_name, weight_name, shard_id in self.stacked_params_mapping: if weight_name in name: mapped_name = name.replace(weight_name, param_name) mapped_shard_id = shard_id break params_dict = dict(self.named_parameters()) param = params_dict[mapped_name] if mapped_shard_id is not None: if mapped_shard_id in ["q", "k", "v"]: num_heads = self.config.num_attention_heads // tp_size num_kv_heads = self.config.num_key_value_heads // tp_size head_dim = ( self.config.hidden_size // self.config.num_attention_heads ) if mapped_shard_id == "q": offset = 0 size = num_heads * head_dim elif mapped_shard_id == "k": offset = num_heads * head_dim size = num_kv_heads * head_dim elif mapped_shard_id == "v": offset = (num_heads + num_kv_heads) * head_dim size = num_kv_heads * head_dim weight = param.data.narrow(0, offset, size) elif mapped_shard_id in [0, 1]: intermediate_size = self.config.intermediate_size slice_size = intermediate_size // tp_size if mapped_shard_id == 0: # gate_proj offset = 0 size = slice_size elif mapped_shard_id == 1: # up_proj offset = slice_size size = slice_size weight = param.data.narrow(0, offset, size) else: weight = param.data else: weight = param.data if tp_size > 1 and ("o_proj" in name or "down_proj" in name): gathered_weights = [torch.zeros_like(weight) for _ in range(tp_size)] torch.distributed.all_gather(gathered_weights, weight) weight = torch.cat(gathered_weights, dim=1) return weight.cpu().to(torch.float32).numpy().tolist()[:truncate_size] except Exception: logger.error( f"Error getting weights by name {name} in LlamaForCausalLM: {get_exception_traceback()}" ) return None def get_embed_and_head(self): return self.model.embed_tokens.weight, self.lm_head.weight def set_embed_and_head(self, embed, head): del self.model.embed_tokens.weight del self.lm_head.weight self.model.embed_tokens.weight = embed self.lm_head.weight = head torch.cuda.empty_cache() torch.cuda.synchronize() def get_embed(self): return self.model.embed_tokens.weight def set_embed(self, embed): # NOTE: If draft hidden size != target hidden size, the embed weight cannot be shared for EAGLE3 if ( hasattr(self.config, "target_hidden_size") and self.config.target_hidden_size != self.config.hidden_size ): return del self.model.embed_tokens.weight self.model.embed_tokens.weight = embed torch.cuda.empty_cache() torch.cuda.synchronize() def load_kv_cache_scales(self, quantization_param_path: str) -> None: self.model.load_kv_cache_scales(quantization_param_path) def set_eagle3_layers_to_capture(self): self.capture_aux_hidden_states = True num_layers = self.config.num_hidden_layers self.model.layers_to_capture = [2, num_layers // 2, num_layers - 3] class Phi3ForCausalLM(LlamaForCausalLM): pass class InternLM3ForCausalLM(LlamaForCausalLM): pass EntryClass = [LlamaForCausalLM, Phi3ForCausalLM, InternLM3ForCausalLM]