# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from typing import Iterable, Optional, Tuple import torch from torch import nn from transformers import LlamaConfig from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import default_weight_loader from sglang.srt.models.llama import LlamaForCausalLM, LlamaModel from sglang.srt.utils import add_prefix class LlamaForClassification(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = LlamaModel( config, quant_config=quant_config, prefix=add_prefix("model", prefix) ) self.classification_head = nn.Linear( config.hidden_size, config.classification_out_size, bias=False ) self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=False) @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, get_embedding: bool = True, ) -> EmbeddingPoolerOutput: assert ( get_embedding ), "LlamaForClassification is only used for embedding. Please add --is-embedding when you launch the server." hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) last_token_hidden = self.pooler(hidden_states, forward_batch).embeddings scores = self.classification_head(last_token_hidden) return EmbeddingPoolerOutput(scores) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "classification_head" in name: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) elif "lm_head" in name: continue else: LlamaForCausalLM.load_weights(self, [(name, loaded_weight)]) EntryClass = LlamaForClassification