# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from typing import Iterable, Optional, Tuple import torch from torch import nn from transformers import LlamaConfig from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.models.llama import LlamaForCausalLM, LlamaModel from sglang.srt.utils import add_prefix class LlamaForSequenceClassification(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.num_labels = config.num_labels self.model = LlamaModel( config, quant_config=quant_config, prefix=add_prefix("model", prefix) ) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=False) self.eos_token_id = config.eos_token_id @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, get_embedding: bool = True, ) -> EmbeddingPoolerOutput: assert ( get_embedding ), "LlamaForSequenceClassification is only used for embedding" hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) last_token_hidden = self.pooler(hidden_states, forward_batch).embeddings scores = self.score(last_token_hidden) return EmbeddingPoolerOutput(scores) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): return LlamaForCausalLM.load_weights(self, weights) class LlamaForSequenceClassificationWithNormal_Weights(LlamaForSequenceClassification): class Weights(torch.nn.Module): def __init__(self, hidden_size, num_label): super().__init__() self.fc = torch.nn.Sequential( torch.nn.Linear(hidden_size, hidden_size, dtype=torch.float16), torch.nn.SELU(), torch.nn.Linear(hidden_size, hidden_size, dtype=torch.float16), torch.nn.SELU(), torch.nn.Linear(hidden_size, num_label // 2, dtype=torch.float16), ) def forward(self, x): return self.fc(x.to(torch.float16)) def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__(config, quant_config, prefix=prefix) self.weights = self.Weights(config.hidden_size, self.num_labels) @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, get_embedding: bool = True, ) -> EmbeddingPoolerOutput: assert ( get_embedding ), "LlamaForSequenceClassification is only used for embedding" hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) logits = self.score(hidden_states) weights = self.weights(hidden_states) pooled_logits = self.pooler(logits, forward_batch).embeddings pooled_weights = self.pooler(weights, forward_batch).embeddings rews = pooled_logits.view(-1, self.num_labels // 2, 2)[:, :, 0].view( -1, self.num_labels // 2 ) scores = (rews * pooled_weights).sum(dim=-1).view(-1, 1) return EmbeddingPoolerOutput(scores) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): return super().load_weights(weights) EntryClass = [ LlamaForSequenceClassification, LlamaForSequenceClassificationWithNormal_Weights, ]