# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from # https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/olmo2.py """Inference-only OLMo2 model compatible with HuggingFace weights.""" from functools import partial from typing import Iterable, Optional, Tuple import torch from torch import nn from transformers import PretrainedConfig from sglang.srt.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, split_tensor_along_last_dim, tensor_model_parallel_all_gather, ) from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import default_weight_loader from sglang.srt.utils import add_prefix, make_layers class Olmo2Attention(nn.Module): """ This is the attention block where the output is computed as ``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). """ def __init__( self, config: PretrainedConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.hidden_size = config.hidden_size self.tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = config.num_attention_heads assert self.hidden_size % self.total_num_heads == 0 assert self.total_num_heads % self.tp_size == 0 self.num_heads = self.total_num_heads // self.tp_size self.total_num_kv_heads = self.config.num_key_value_heads if self.total_num_kv_heads >= self.tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % self.tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert self.tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size) self.head_dim = self.hidden_size // self.total_num_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta # Attention input projection. Projects x -> (q, k, v) self.qkv_proj = QKVParallelLinear( self.hidden_size, self.head_dim, self.total_num_heads, bias=config.attention_bias, quant_config=quant_config, prefix=add_prefix("qkv_proj", prefix), ) self.tp_rank = get_tensor_model_parallel_rank() self.k_norm = RMSNorm( self.total_num_kv_heads * self.head_dim, eps=self.config.rms_norm_eps, ) self.q_norm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) # Rotary embeddings. self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=self.max_position_embeddings, base=self.rope_theta, ) self.scaling = self.head_dim**-0.5 self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, prefix=add_prefix("attn", prefix), ) # Attention output projection. self.o_proj = RowParallelLinear( self.head_dim * self.total_num_heads, self.hidden_size, bias=config.attention_bias, quant_config=quant_config, prefix=add_prefix("o_proj", prefix), ) def _apply_qk_norm( self, q: torch.Tensor, k: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: if self.tp_size > 1: q = tensor_model_parallel_all_gather(q.contiguous()) k = tensor_model_parallel_all_gather(k.contiguous()) q = self.q_norm.forward_native(q) k = self.k_norm.forward_native(k) if self.tp_size > 1: splitter = partial(split_tensor_along_last_dim, num_partitions=self.tp_size) q = splitter(q)[self.tp_rank] k = splitter(k)[self.tp_rank] return q, k def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self._apply_qk_norm(q, k) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output, _ = self.o_proj(attn_output) return output class Olmo2MLP(nn.Module): """ This is the MLP block where the output is computed as ``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))`` (plus another skip connection). """ def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size # Feed-forward input projection. self.gate_up_proj = MergedColumnParallelLinear( self.hidden_size, [self.intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=add_prefix("gate_up_proj", prefix), ) # Activation function. self.act_fn = SiluAndMul() # Feed-forward output projection. self.down_proj = RowParallelLinear( self.intermediate_size, self.hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("down_proj", prefix), ) def forward( self, x: torch.Tensor, ) -> torch.Tensor: gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Olmo2DecoderLayer(nn.Module): """ This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). """ def __init__( self, config: PretrainedConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() # Attention block. self.self_attn = Olmo2Attention( config, layer_id, quant_config, prefix=add_prefix("self_attn", prefix) ) # MLP block. self.mlp = Olmo2MLP(config, quant_config, prefix=add_prefix("mlp", prefix)) # RMSNorm self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.post_feedforward_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: # Attention block. residual = hidden_states hidden_states = self.self_attn(positions, hidden_states, forward_batch) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = hidden_states + residual # MLP block. residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states class Olmo2Model(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, prefix=add_prefix("embed_tokens", prefix), ) self.layers = make_layers( config.num_hidden_layers, lambda idx, prefix: Olmo2DecoderLayer( layer_id=idx, config=config, quant_config=quant_config, prefix=prefix, ), prefix=add_prefix("layers", prefix), ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: """ :param input_ids: A tensor of shape `(batch_size, seq_len)`. """ # Get embeddings of input. # shape: (batch_size, seq_len, d_model) if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds # Apply blocks one-by-one. for layer_id, decoder_layer in enumerate(self.layers): # shape: (batch_size, seq_len, d_model) hidden_states = decoder_layer( positions, hidden_states, forward_batch, ) # Apply final layer norm. # shape: (batch_size, seq_len or 1, d_model) hidden_states = self.norm(hidden_states) return hidden_states class Olmo2ForCausalLM(nn.Module): """ Extremely barebones HF model wrapper. """ def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.model = Olmo2Model( config, quant_config, prefix=add_prefix("model", prefix) ) if config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.unpadded_vocab_size = config.vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, quant_config=quant_config, prefix=add_prefix("lm_head", prefix), ) self.logits_processor = LogitsProcessor(config) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: hidden_states = self.model( input_ids=input_ids, positions=positions, forward_batch=forward_batch, input_embeds=input_embeds, ) return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue # With tie_word_embeddings, we can skip lm_head.weight # The weight might appear unnecessarily in the files if the model is # processed with quantization, LoRA, fine-tuning, etc. if self.config.tie_word_embeddings and "lm_head.weight" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) EntryClass = Olmo2ForCausalLM