# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from llama2.py # Modify details for the adaptation of Qwen2 model. """Inference-only Qwen2 model compatible with HuggingFace weights.""" from typing import Any, Dict, Iterable, Optional, Tuple import torch from torch import nn from sglang.srt.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.pooler import Pooler, PoolingType from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import ( default_weight_loader, kv_cache_scales_loader, ) from sglang.srt.utils import add_prefix, make_layers Qwen2Config = None class Qwen2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=add_prefix("gate_up_proj", prefix), ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("down_proj", prefix), ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Qwen2Attention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, layer_id: int = 0, rope_theta: float = 1000000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 32768, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=True, quant_config=quant_config, prefix=add_prefix("qkv_proj", prefix), ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=add_prefix("o_proj", prefix), ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, prefix=add_prefix("attn", prefix), ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output, _ = self.o_proj(attn_output) return output class Qwen2DecoderLayer(nn.Module): def __init__( self, config: Qwen2Config, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 1000000) rope_scaling = getattr(config, "rope_scaling", None) max_position_embeddings = getattr(config, "max_position_embeddings", 32768) self.self_attn = Qwen2Attention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, layer_id=layer_id, rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, quant_config=quant_config, prefix=add_prefix("self_attn", prefix), ) self.mlp = Qwen2MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=add_prefix("mlp", prefix), ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, forward_batch=forward_batch, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class Qwen2Model(nn.Module): def __init__( self, config: Qwen2Config, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=add_prefix("embed_tokens", prefix), ) self.layers = make_layers( config.num_hidden_layers, lambda idx, prefix: Qwen2DecoderLayer( layer_id=idx, config=config, quant_config=quant_config, prefix=prefix, ), prefix=add_prefix("layers", prefix), ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: if hasattr(self.config, "scale_emb"): return self.embed_tokens(input_ids) * self.config.scale_emb else: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, forward_batch, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states # If this function is called, it should always initialize KV cache scale # factors (or else raise an exception). Thus, handled exceptions should # make sure to leave KV cache scale factors in a known good (dummy) state def load_kv_cache_scales(self, quantization_param_path: str) -> None: tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() for layer_idx, scaling_factor in kv_cache_scales_loader( quantization_param_path, tp_rank, tp_size, self.config.num_hidden_layers, self.config.__class__.model_type, ): if not isinstance(self.layers[layer_idx], nn.Identity): layer_self_attn = self.layers[layer_idx].self_attn if hasattr(layer_self_attn.attn, "k_scale"): layer_self_attn.attn.k_scale = scaling_factor layer_self_attn.attn.v_scale = scaling_factor else: raise RuntimeError( "Self attention has no KV cache scaling " "factor attribute!" ) class Qwen2ForCausalLM(nn.Module): # BitandBytes specific attributes default_bitsandbytes_target_modules = [ ".gate_proj.", ".down_proj.", ".up_proj.", ".q_proj.", ".k_proj.", ".v_proj.", ".o_proj.", ] bitsandbytes_stacked_params_mapping = { # shard_name, weight_name, index "q_proj": ("qkv_proj", 0), "k_proj": ("qkv_proj", 1), "v_proj": ("qkv_proj", 2), "gate_proj": ("gate_up_proj", 0), "up_proj": ("gate_up_proj", 1), } def __init__( self, config: Qwen2Config, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = Qwen2Model( config, quant_config=quant_config, prefix=add_prefix("model", prefix) ) if config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=add_prefix("lm_head", prefix), ) self.logits_processor = LogitsProcessor(config) self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def get_input_embedding(self) -> nn.Embedding: return self.model.embed_tokens @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, get_embedding: bool = False, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) if not get_embedding: return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch ) else: return self.pooler(hidden_states, forward_batch) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name or "projector" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue if self.config.tie_word_embeddings and "lm_head.weight" in name: continue if name.startswith("model.vision_tower") and name not in params_dict: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) def get_embed_and_head(self): return self.model.embed_tokens.weight, self.lm_head.weight def set_embed_and_head(self, embed, head): del self.model.embed_tokens.weight del self.lm_head.weight self.model.embed_tokens.weight = embed self.lm_head.weight = head torch.cuda.empty_cache() torch.cuda.synchronize() def load_kv_cache_scales(self, quantization_param_path: str) -> None: self.model.load_kv_cache_scales(quantization_param_path) EntryClass = Qwen2ForCausalLM