# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py # Copyright 2024 The Qwen team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Qwen2-VL model compatible with HuggingFace weights.""" import logging from functools import lru_cache, partial from typing import Iterable, List, Optional, Tuple, Type import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from transformers import AutoModel, Qwen2VLConfig from transformers.activations import ACT2FN from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import ( Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig, ) from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import ( Qwen2_5_VLForConditionalGeneration, ) from sglang.srt.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from sglang.srt.hf_transformers_utils import get_processor from sglang.srt.layers.attention.vision import VisionAttention from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.pooler import Pooler, PoolingType from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead from sglang.srt.managers.mm_utils import ( MultiModalityDataPaddingPatternTokenPairs, general_mm_embed_routine, ) from sglang.srt.managers.schedule_batch import MultimodalInputs from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import default_weight_loader from sglang.srt.models.qwen2 import Qwen2Model from sglang.srt.models.qwen2_vl import Qwen2VLVideoInputs from sglang.srt.utils import add_prefix logger = logging.getLogger(__name__) class Qwen2_5_VLMLP(nn.Module): def __init__( self, in_features: int, hidden_features: int = None, bias: bool = True, hidden_act="silu", quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.gate_proj = ColumnParallelLinear( in_features, hidden_features, bias=bias, quant_config=quant_config, prefix=add_prefix("gate_proj", prefix), ) self.up_proj = ColumnParallelLinear( in_features, hidden_features, bias=bias, quant_config=quant_config, prefix=add_prefix("up_proj", prefix), ) self.down_proj = RowParallelLinear( hidden_features, in_features, bias=bias, quant_config=quant_config, prefix=add_prefix("down_proj", prefix), ) self.act = ACT2FN[hidden_act] def forward(self, x: torch.Tensor) -> torch.Tensor: x_parallel_gate, _ = self.gate_proj(x) x_parallel_gate = self.act(x_parallel_gate) x_parallel_up, _ = self.up_proj(x) x_parallel = x_parallel_gate * x_parallel_up x, _ = self.down_proj(x_parallel) return x class Qwen2_5_VisionBlock(nn.Module): def __init__( self, dim: int, intermediate_dim: int, num_heads: int, hidden_act="silu", norm_layer: Type[nn.Module] = None, attn_implementation: Optional[str] = "sdpa", quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() if norm_layer is None: norm_layer = partial(nn.LayerNorm, eps=1e-6) self.norm1 = Qwen2RMSNorm(dim, eps=1e-6) self.norm2 = Qwen2RMSNorm(dim, eps=1e-6) if attn_implementation == "sdpa": use_context_forward = False softmax_in_single_precision = False flatten_batch = True elif attn_implementation == "flash_attention_2": softmax_in_single_precision = False use_context_forward = True flatten_batch = True elif attn_implementation == "eager": softmax_in_single_precision = True use_context_forward = False flatten_batch = True self.attn = VisionAttention( embed_dim=dim, num_heads=num_heads, projection_size=dim, use_qkv_parallel=False, use_context_forward=use_context_forward, softmax_in_single_precision=softmax_in_single_precision, flatten_batch=flatten_batch, quant_config=quant_config, prefix=add_prefix("attn", prefix), ) self.mlp = Qwen2_5_VLMLP( dim, intermediate_dim, hidden_act=hidden_act, quant_config=quant_config, prefix=add_prefix("mlp", prefix), ) def forward( self, x: torch.Tensor, cu_seqlens: torch.Tensor, position_embeddings: torch.Tensor, ) -> torch.Tensor: hidden_states = self.norm1(x) hidden_states = rearrange(hidden_states, "s b ... -> b s ...") attn = self.attn( hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings, ) attn = rearrange(attn, "b s ... -> s b ...") x = x + attn norm2 = self.norm2(x) mlp = self.mlp(norm2) x = x + mlp return x class Qwen2_5_VisionPatchEmbed(nn.Module): def __init__( self, patch_size: int = 14, temporal_patch_size: int = 2, in_chans: int = 3, embed_dim: int = 1152, ) -> None: super().__init__() self.patch_size = patch_size self.temporal_patch_size = temporal_patch_size self.embed_dim = embed_dim kernel_size = [temporal_patch_size, patch_size, patch_size] self.proj = nn.Conv3d( in_chans, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False ) def forward(self, x: torch.Tensor) -> torch.Tensor: target_dtype = self.proj.weight.dtype L, C = x.shape x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size) x = self.proj(x.to(dtype=target_dtype)).view(L, self.embed_dim) return x class Qwen2_5_VisionPatchMerger(nn.Module): def __init__( self, dim: int, context_dim: int, spatial_merge_size: int = 2, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = context_dim * (spatial_merge_size**2) self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6) self.mlp = nn.ModuleList( [ ColumnParallelLinear( self.hidden_size, self.hidden_size, bias=True, quant_config=quant_config, prefix=add_prefix("mlp.0", prefix), ), nn.GELU(), RowParallelLinear( self.hidden_size, dim, bias=True, quant_config=quant_config, prefix=add_prefix("mlp.2", prefix), ), ] ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.ln_q(x) x = x.view(-1, self.hidden_size) mlp_fc1, mlp_act, mlp_fc2 = self.mlp x_parallel, _ = mlp_fc1(x) x_parallel = mlp_act(x_parallel) out, _ = mlp_fc2(x_parallel) return out class Qwen2_5_VisionRotaryEmbedding(nn.Module): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange( seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype ) freqs = torch.outer(seq, self.inv_freq) return freqs class Qwen2_5_VisionTransformer(nn.Module): def __init__( self, vision_config: Qwen2_5_VLVisionConfig, norm_eps: float = 1e-6, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() patch_size: int = vision_config.patch_size temporal_patch_size: int = vision_config.temporal_patch_size spatial_merge_size: int = vision_config.spatial_merge_size self.spatial_merge_size = spatial_merge_size self.spatial_merge_unit: int = spatial_merge_size * spatial_merge_size in_chans: int = vision_config.in_channels hidden_size: int = vision_config.hidden_size depth: int = vision_config.depth num_heads: int = vision_config.num_heads self.fullatt_block_indexes = vision_config.fullatt_block_indexes self.window_size = vision_config.window_size self.patch_size = vision_config.patch_size mlp_hidden_size: int = vision_config.intermediate_size self.patch_embed = Qwen2_5_VisionPatchEmbed( patch_size=patch_size, temporal_patch_size=temporal_patch_size, in_chans=in_chans, embed_dim=hidden_size, ) norm_layer = partial(nn.LayerNorm, eps=norm_eps) head_dim = hidden_size // num_heads self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2) self.blocks = nn.ModuleList( [ Qwen2_5_VisionBlock( dim=hidden_size, intermediate_dim=mlp_hidden_size, num_heads=num_heads, hidden_act=vision_config.hidden_act, norm_layer=norm_layer, attn_implementation="sdpa", quant_config=quant_config, prefix=add_prefix(f"blocks.{i}", prefix), ) for i in range(depth) ] ) self.merger = Qwen2_5_VisionPatchMerger( dim=vision_config.out_hidden_size, context_dim=hidden_size, spatial_merge_size=spatial_merge_size, quant_config=quant_config, prefix=add_prefix("merger", prefix), ) def get_window_index(self, grid_thw): cu_window_seqlens: list = [0] window_index_id = 0 vit_merger_window_size = ( self.window_size // self.spatial_merge_size // self.patch_size ) window_index: list = [] for grid_t, grid_h, grid_w in grid_thw: llm_grid_h, llm_grid_w = ( grid_h // self.spatial_merge_size, grid_w // self.spatial_merge_size, ) index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape( grid_t, llm_grid_h, llm_grid_w ) pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100) index_padded = index_padded.reshape( grid_t, num_windows_h, vit_merger_window_size, num_windows_w, vit_merger_window_size, ) index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( grid_t, num_windows_h * num_windows_w, vit_merger_window_size, vit_merger_window_size, ) seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) index_padded = index_padded.reshape(-1) index_new = index_padded[index_padded != -100] window_index.append(index_new + window_index_id) cu_seqlens_tmp = ( seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1] ) cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() window_index = torch.cat(window_index, dim=0) return window_index, cu_window_seqlens @property def dtype(self) -> torch.dtype: return self.blocks[0].mlp.gate_proj.weight.dtype @property def device(self) -> torch.device: return self.blocks[0].mlp.gate_proj.weight.device def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: pos_ids = [] for i in range(grid_thw.size(0)): t, h, w = grid_thw[i].tolist() hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) hpos_ids = hpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) hpos_ids = hpos_ids.permute(0, 2, 1, 3) hpos_ids = hpos_ids.flatten() wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) wpos_ids = wpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) wpos_ids = wpos_ids.permute(0, 2, 1, 3) wpos_ids = wpos_ids.flatten() pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_thw[:, 1:].max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb def forward( self, x: torch.Tensor, grid_thw: torch.Tensor, ) -> torch.Tensor: # patchify x = x.to(device=self.device, dtype=self.dtype) x = self.patch_embed(x) # compute position embedding rotary_pos_emb = self.rot_pos_emb(grid_thw) window_index, cu_window_seqlens = self.get_window_index(grid_thw) cu_window_seqlens = torch.tensor( cu_window_seqlens, device=x.device, dtype=torch.int32, ) cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens) seq_len, _ = x.size() x = x.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) x = x[window_index, :, :] x = x.reshape(seq_len, -1) rotary_pos_emb = rotary_pos_emb.reshape( seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1 ) rotary_pos_emb = rotary_pos_emb[window_index, :, :] rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) position_embeddings = (emb.cos(), emb.sin()) # compute cu_seqlens cu_seqlens = torch.cat( [ torch.tensor([0], device=grid_thw.device), (grid_thw[:, 0] * grid_thw[:, 1] * grid_thw[:, 2]).cumsum(dim=0), ] ) cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0) # transformers x = x.unsqueeze(1) for layer_num, blk in enumerate(self.blocks): if layer_num in self.fullatt_block_indexes: cu_seqlens_now = cu_seqlens else: cu_seqlens_now = cu_window_seqlens x = blk( x, cu_seqlens=cu_seqlens_now, position_embeddings=position_embeddings ) # adapter x = self.merger(x) reverse_indices = torch.argsort(window_index) x = x[reverse_indices, :] return x cached_get_processor = lru_cache(get_processor) class Qwen2_5_VLForConditionalGeneration(nn.Module): def __init__( self, config: Qwen2VLConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.visual = Qwen2_5_VisionTransformer( config.vision_config, norm_eps=getattr(config, "rms_norm_eps", 1e-6), # NOTE: Qwen2-VL vision encoder does not support any # quantization method now. quant_config=None, prefix=add_prefix("visual", prefix), ) self.model = Qwen2Model( config, quant_config, prefix=add_prefix("model", prefix), ) if config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=add_prefix("lm_head", prefix), ) self.logits_processor = LogitsProcessor(config) self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True) def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs): # Get all special token IDs im_start_id: int = image_inputs.im_start_id im_end_id: int = image_inputs.im_end_id media_token_pairs = [(im_start_id, im_end_id)] pattern = MultiModalityDataPaddingPatternTokenPairs(media_token_pairs) return pattern.pad_input_tokens(input_ids, image_inputs) def get_image_feature(self, image_input: MultimodalInputs) -> torch.Tensor: pixel_values = image_input.pixel_values.type(self.visual.dtype) image_embeds = self.visual(pixel_values, grid_thw=image_input.image_grid_thws) return image_embeds def _process_video_input(self, video_input: Qwen2VLVideoInputs) -> torch.Tensor: pixel_values_videos = video_input["pixel_values_videos"].type(self.visual.dtype) video_embeds = self.visual( pixel_values_videos, grid_thw=video_input["video_grid_thw"] ) return video_embeds def get_input_embeddings(self): return self.model.embed_tokens def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, get_embedding: bool = False, ): """Run forward pass for Qwen2_5-VL. Args: input_ids: Flattened (concatenated) input_ids corresponding to a batch. positions: Flattened (concatenated) position ids corresponding to a batch. **NOTE**: If mrope is enabled (default setting for Qwen2-VL opensource models), the shape will be `(3, seq_len)`, otherwise it will be `(seq_len,). (Use input_metadata.mrope_positions to replace it) """ if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope": positions = forward_batch.mrope_positions if not ( forward_batch.forward_mode.is_decode() or not forward_batch.contains_image_inputs() ): if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope": assert positions.ndim == 2 and positions.size(0) == 3, ( "multimodal section rotary embedding requires " f"(3, seq_len) positions, but got {positions.size()}" ) inputs_embeds = general_mm_embed_routine( input_ids=input_ids, forward_batch=forward_batch, embed_tokens=self.get_input_embeddings(), mm_data_embedding_func=self.get_image_feature, ) hidden_states = self.model( input_ids=None, positions=positions, forward_batch=forward_batch, input_embeds=inputs_embeds, ) if not get_embedding: return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch ) else: return self.pooler(hidden_states, forward_batch) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "up_proj", 1), ("gate_up_proj", "gate_proj", 0), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue if "visual" in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: if "visual" in name and "qkv.weight" in name: visual_num_heads = self.config.vision_config.num_heads visual_embed_dim = self.config.vision_config.hidden_size head_size = visual_embed_dim // visual_num_heads loaded_weight = loaded_weight.view( 3, visual_num_heads, head_size, visual_embed_dim ) loaded_weight = loaded_weight.transpose(0, 1) loaded_weight = loaded_weight.reshape(-1, visual_embed_dim) elif "visual" in name and "qkv.bias" in name: visual_num_heads = self.config.vision_config.num_heads visual_embed_dim = self.config.vision_config.hidden_size head_size = visual_embed_dim // visual_num_heads loaded_weight = loaded_weight.view(3, visual_num_heads, head_size) loaded_weight = loaded_weight.transpose(0, 1) loaded_weight = loaded_weight.reshape(-1) if "visual" in name: # adapt to VisionAttention name = name.replace(r"attn.qkv.", r"attn.qkv_proj.") try: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] except KeyError: print(params_dict.keys()) raise weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) EntryClass = [Qwen2_5_VLForConditionalGeneration]