# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1 """ Inference-only LLaMA model compatible with HuggingFace weights. This model supports tensor parallelism (TP) using the PyTorch tensor parallel package. Reference: https://pytorch.org/docs/stable/distributed.tensor.parallel.html Here is a quick example to enable TP: ```python from sglang.srt.model_parallel import tensor_parallel device_mesh = torch.distributed.init_device_mesh("cuda", (tp_size,)) tensor_parallel(model, device_mesh) ``` An end-to-end example can be found in `python/sglang/bench_one_batch.py`. You can run it with the following command: ```bash $ python3 -m sglang.bench_one_batch --correct \ --model meta-llama/Meta-Llama-3-8B \ --json-model-override-args '{"architectures": ["TorchNativeLlamaForCausalLM"]}' \ --tensor-parallel-size 2 \ --disable-cuda-graph ``` We will eanble CUDA Graph support soon. """ import types from typing import Any, Dict, Iterable, Optional, Tuple import torch from torch import nn from torch.nn.parameter import Parameter from transformers import LlamaConfig from sglang.srt.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import default_weight_loader from sglang.srt.utils import add_prefix tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() def gate_up_proj_weight_loader( self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: int, ): # shard_id: (shard_offset, shard_size) gate_up_offsets = {} current_shard_offset = 0 for i, output_size in enumerate(self.output_sizes): # Everything shrinks by tp_size if TP enabled output_size = output_size // tp_size gate_up_offsets[i] = (current_shard_offset, output_size) current_shard_offset += output_size # Re-size the param to the size after TP if current_shard_offset != param.shape[0]: # The clone will free the original, full tensor param.data = param.data.narrow(0, 0, current_shard_offset).clone() # Now load gate or up assert loaded_shard_id < len(self.output_sizes) param_data = param.data shard_offset, shard_size = gate_up_offsets[loaded_shard_id] param_data = param_data.narrow(0, shard_offset, shard_size) loaded_weight = loaded_weight.narrow(0, tp_rank * shard_size, shard_size) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class LlamaMLP(nn.Module): _tp_plan = { "gate_up_proj": "Colwise_Sharded", "down_proj": "Rowwise", } def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = torch.nn.Linear( hidden_size, intermediate_size * 2, bias=False, ) self.gate_up_proj.output_sizes = [intermediate_size] * 2 self.gate_up_proj.weight_loader = types.MethodType( gate_up_proj_weight_loader, self.gate_up_proj ) self.gate_up_proj.weight.weight_loader = self.gate_up_proj.weight_loader self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up = self.gate_up_proj(x) x = self.act_fn(gate_up) x = self.down_proj(x) return x def qkv_proj_weight_loader( self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: str, ): num_heads = self.num_heads // tp_size num_kv_heads = self.num_kv_heads // tp_size # shard_id: (shard_offset, shard_size) qkv_offsets = { "q": (0, num_heads * self.head_size), "k": (num_heads * self.head_size, num_kv_heads * self.head_size), "v": ( (num_heads + num_kv_heads) * self.head_size, num_kv_heads * self.head_size, ), } total_size = qkv_offsets["v"][0] + qkv_offsets["v"][1] # Re-size the param to the size after TP if total_size != param.shape[0]: # The clone will free the original, full tensor param.data = param.data.narrow(0, 0, total_size).clone() # Now load q, k or v shard_offset, shard_size = qkv_offsets[loaded_shard_id] param_data = param.data param_data = param_data.narrow(0, shard_offset, shard_size) loaded_weight = loaded_weight.narrow(0, tp_rank * shard_size, shard_size) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class LlamaAttention(nn.Module): _tp_plan = { "qkv_proj": "Colwise_Sharded", "o_proj": "Rowwise", } def __init__( self, config: LlamaConfig, hidden_size: int, num_heads: int, num_kv_heads: int, layer_id: int = 0, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, rope_is_neox_style: bool = True, max_position_embeddings: int = 8192, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) # MistralConfig has an optional head_dim introduced by Mistral-Nemo self.head_dim = getattr( config, "head_dim", self.hidden_size // self.total_num_heads ) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = torch.nn.Linear( hidden_size, (self.total_num_heads + 2 * self.total_num_kv_heads) * self.head_dim, bias=False, ) self.qkv_proj.head_size = self.head_dim self.qkv_proj.num_heads = self.total_num_heads self.qkv_proj.num_kv_heads = self.total_num_kv_heads self.qkv_proj.weight_loader = types.MethodType( qkv_proj_weight_loader, self.qkv_proj ) self.qkv_proj.weight.weight_loader = self.qkv_proj.weight_loader self.qkv_proj.weight.output_dim = 0 self.o_proj = torch.nn.Linear( self.total_num_heads * self.head_dim, hidden_size, bias=False, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=rope_is_neox_style, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output = self.o_proj(attn_output) return output class LlamaDecoderLayer(nn.Module): def __init__( self, config: LlamaConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None ): rope_scaling["original_max_position_embeddings"] = ( config.original_max_position_embeddings ) rope_is_neox_style = getattr(config, "rope_is_neox_style", True) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.self_attn = LlamaAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, layer_id=layer_id, rope_theta=rope_theta, rope_scaling=rope_scaling, rope_is_neox_style=rope_is_neox_style, max_position_embeddings=max_position_embeddings, quant_config=quant_config, prefix=add_prefix("self_attn", prefix), ) self.mlp = LlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=add_prefix("mlp", prefix), ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, forward_batch=forward_batch, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class LlamaModel(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList( [ LlamaDecoderLayer( config, i, quant_config=quant_config, prefix=f"model.layers.{i}" ) for i in range(config.num_hidden_layers) ] ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, forward_batch, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class TorchNativeLlamaForCausalLM(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.supports_torch_tp = True self.model = LlamaModel(config, quant_config=quant_config) if self.config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) self.logits_processor = LogitsProcessor(config) # turning off autotune for fp8dq since it doesn't give speedup and # increases compile time significantly torch._inductor.config.max_autotune_gemm_backends = "ATEN" @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> LogitsProcessorOutput: hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch ) def get_hidden_dim(self, module_name): if module_name in ["q_proj", "o_proj", "qkv_proj"]: return self.config.hidden_size, self.config.hidden_size elif module_name in ["kv_proj"]: return self.config.hidden_size, self.config.hidden_size // ( self.config.num_attention_heads // self.config.num_key_value_heads ) elif module_name == "gate_up_proj": return self.config.hidden_size, self.config.intermediate_size elif module_name == "down_proj": return self.config.intermediate_size, self.config.hidden_size else: raise NotImplementedError() def get_module_name(self, name): params_mapping = { "q_proj": "qkv_proj", "k_proj": "qkv_proj", "v_proj": "qkv_proj", "gate_proj": "gate_up_proj", "up_proj": "gate_up_proj", } return params_mapping.get(name, name) def get_module_name_from_weight_name(self, name): stacked_params_mapping = [ # (param_name, shard_name, shard_id, num_shard) ("qkv_proj", "q_proj", "q", 3), ("qkv_proj", "k_proj", "k", 3), ("qkv_proj", "v_proj", "v", 3), ("gate_up_proj", "gate_proj", 0, 2), ("gate_up_proj", "up_proj", 1, 2), ] for param_name, weight_name, shard_id, num_shard in stacked_params_mapping: if weight_name in name: return ( name.replace(weight_name, param_name)[: -len(".weight")], num_shard, ) return name[: -len(".weight")], 1 def get_num_params(self): params_dict = dict(self.named_parameters()) return len(params_dict) def load_weights_to_module( self, fqn: str, weights: Iterable[Tuple[str, torch.Tensor]], ): """Load weights onto submodule pointed by path `fqn`.""" stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] module = self.get_submodule(fqn) params_dict = dict(module.named_parameters(prefix=fqn, recurse=False)) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name or "projector" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue if name.startswith("model.vision_tower") and name not in params_dict: continue if self.config.tie_word_embeddings and "lm_head.weight" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") or name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") or name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) def load_weights( self, weights: Iterable[Tuple[str, torch.Tensor]], ): """Load weights onto the full model.""" self.load_weights_to_module("", weights) class TorchNativePhi3ForCausalLM(TorchNativeLlamaForCausalLM): pass EntryClass = [TorchNativeLlamaForCausalLM, TorchNativePhi3ForCausalLM]