# NOTE: Please run this file to make sure the test cases are correct. from typing import List import torch from sglang.srt.utils import is_cuda_available, is_hip if is_cuda_available() or is_hip(): from sgl_kernel import ( build_tree_kernel_efficient as sgl_build_tree_kernel_efficient, ) def build_tree_kernel_efficient_preprocess( verified_id: torch.Tensor, score_list: List[torch.Tensor], token_list: List[torch.Tensor], parents_list: List[torch.Tensor], num_verify_tokens: int, ): score_list = torch.cat(score_list, dim=1).flatten( 1 ) # b, n, topk; n= 1 + (num_steps-1) * self.topk ss_token_list = torch.cat( token_list, dim=1 ) # b, (self.topk + (num_steps-1) * self.topk) top_scores = torch.topk(score_list, num_verify_tokens - 1, dim=-1) top_scores_index = top_scores.indices top_scores_index = torch.sort(top_scores_index).values draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1) draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1).flatten() if len(parents_list) > 1: parent_list = torch.cat(parents_list[:-1], dim=1) else: batch_size = parents_list[0].shape[0] parent_list = torch.empty(batch_size, 0, device=parents_list[0].device) return parent_list, top_scores_index, draft_tokens def build_tree_kernel_efficient( verified_id: torch.Tensor, score_list: List[torch.Tensor], token_list: List[torch.Tensor], parents_list: List[torch.Tensor], seq_lens: torch.Tensor, seq_lens_sum: int, topk: int, spec_steps: int, num_verify_tokens: int, ): parent_list, top_scores_index, draft_tokens = ( build_tree_kernel_efficient_preprocess( verified_id, score_list, token_list, parents_list, num_verify_tokens, ) ) # seq_lens_sum == sum(seq_lens); seq_lens: sequence length without draft tokens bs = seq_lens.numel() device = seq_lens.device # e.g. for bs=1, tree_mask: num_draft_token, seq_lens_sum + num_draft_token (flattened) # where each row indicates the attending pattern of each draft token # TODO: make them torch.empty and fuse them into `sgl_build_tree_kernel` tree_mask = torch.full( ( seq_lens_sum * num_verify_tokens + num_verify_tokens * num_verify_tokens * bs, ), True, device=device, ) retrive_index = torch.full( (bs, num_verify_tokens), -1, device=device, dtype=torch.long ) retrive_next_token = torch.full( (bs, num_verify_tokens), -1, device=device, dtype=torch.long ) retrive_next_sibling = torch.full( (bs, num_verify_tokens), -1, device=device, dtype=torch.long ) # position: where each token belongs to # e.g. if depth of each draft token is [0, 1, 1, 2] and the prompt length is 7 # then, positions = [7, 8, 8, 9] positions = torch.empty((bs * num_verify_tokens,), device=device, dtype=torch.long) sgl_build_tree_kernel_efficient( parent_list, top_scores_index, seq_lens.to(torch.int32), tree_mask, positions, retrive_index, retrive_next_token, retrive_next_sibling, topk, spec_steps, num_verify_tokens, ) return ( tree_mask, positions, retrive_index, retrive_next_token, retrive_next_sibling, draft_tokens, ) def test_build_tree_kernel_efficient(): verified_id = torch.tensor([29974, 13], device="cuda", dtype=torch.int32) score_list = [ torch.tensor( [ [[7.1127e-01, 2.8292e-01, 2.2995e-03, 1.7357e-03]], [[9.7476e-01, 2.2219e-02, 6.5031e-04, 1.3212e-04]], ], dtype=torch.float32, device="cuda", ), torch.tensor( [ [ [6.9142e-01, 1.2863e-02, 1.6873e-03, 1.1871e-03], [2.4787e-01, 1.8818e-02, 1.4204e-02, 9.2235e-04], [2.2971e-03, 1.6700e-06, 1.8737e-07, 8.3146e-08], [1.2771e-03, 2.4374e-04, 1.7832e-04, 1.1947e-05], ], [ [8.4832e-02, 6.6068e-02, 5.8304e-02, 5.7851e-02], [2.3616e-03, 1.1243e-03, 5.4368e-04, 2.7768e-04], [2.5286e-04, 1.5578e-04, 2.8817e-05, 1.2888e-05], [1.2834e-04, 2.5417e-06, 1.1279e-06, 1.6088e-08], ], ], dtype=torch.float32, device="cuda", ), torch.tensor( [ [ [6.6438e-01, 2.6997e-02, 2.4236e-05, 4.0821e-06], [2.4402e-01, 2.8409e-03, 5.0935e-04, 2.9022e-04], [1.6178e-02, 2.0567e-03, 4.5892e-04, 3.0034e-05], [1.3023e-02, 5.0497e-04, 3.6371e-04, 8.7750e-05], ], [ [2.3263e-02, 2.0054e-02, 9.3990e-03, 2.7783e-03], [6.4156e-02, 5.5506e-04, 1.0429e-04, 9.7211e-05], [4.9950e-02, 5.0630e-03, 9.0068e-04, 3.3656e-04], [7.5817e-03, 8.5731e-04, 6.9972e-04, 6.0793e-04], ], ], dtype=torch.float32, device="cuda", ), torch.tensor( [ [ [6.6420e-01, 1.0525e-04, 6.5864e-05, 1.2253e-06], [1.3019e-01, 1.0461e-01, 5.2083e-03, 1.6777e-03], [2.0103e-02, 6.7335e-03, 1.2625e-04, 1.0364e-05], [1.5142e-02, 7.0819e-04, 9.6595e-05, 8.7951e-05], ], [ [5.8608e-02, 1.8840e-03, 7.8535e-04, 4.4400e-04], [1.2185e-02, 2.0684e-03, 1.7418e-03, 1.4327e-03], [6.2455e-03, 6.1487e-03, 2.6862e-03, 1.8034e-03], [1.8590e-03, 1.6151e-03, 1.2481e-03, 3.6038e-04], ], ], dtype=torch.float32, device="cuda", ), ] token_list = [ torch.tensor( [[29896, 29906, 29900, 29945], [13, 2, 29871, 28956]], dtype=torch.int64, device="cuda", ), torch.tensor( [ [ 29889, 29974, 29945, 29900, 29974, 29922, 29930, 29958, 29889, 29974, 29930, 29945, 29974, 29922, 29930, 29958, ], [ 22550, 4136, 16492, 8439, 29871, 2, 3001, 13, 2, 13, 29906, 29946, 2, 13, 29871, 259, ], ], device="cuda", ), torch.tensor( [ [ 29946, 29945, 29953, 29906, 29896, 29945, 29900, 29906, 29896, 29945, 29906, 29953, 29896, 29945, 29906, 29946, ], [ 29871, 2, 29901, 29889, 29871, 2, 395, 259, 29901, 29871, 2, 29889, 3001, 1234, 7146, 2186, ], ], device="cuda", ), torch.tensor( [ [ 29946, 29974, 29945, 29930, 29889, 29922, 29974, 29930, 29974, 29946, 29930, 29922, 29889, 29974, 29945, 29922, ], [ 29941, 29906, 2, 29946, 29871, 450, 319, 14990, 29946, 29941, 2, 29906, 29871, 2, 3001, 13, ], ], device="cuda", ), ] parents_list = [ torch.tensor( [[-1, 0, 1, 2, 3], [-1, 0, 1, 2, 3]], dtype=torch.int64, device="cuda" ), torch.tensor([[4, 8, 9, 10], [4, 5, 6, 7]], dtype=torch.int64, device="cuda"), torch.tensor( [[20, 24, 21, 28], [24, 28, 20, 21]], dtype=torch.int64, device="cuda" ), torch.tensor( [[36, 40, 41, 44], [36, 40, 44, 45]], dtype=torch.int64, device="cuda" ), ] seq_lens = torch.tensor([5, 10], dtype=torch.int64, device="cuda") topk = 4 depth = 4 num_draft_token = 8 ( tree_mask, position, retrive_index, retrive_next_token, retrive_next_sibling, draft_tokens, ) = build_tree_kernel_efficient( verified_id=verified_id, score_list=score_list, token_list=token_list, parents_list=parents_list, seq_lens=seq_lens, seq_lens_sum=torch.sum(seq_lens).item(), topk=topk, spec_steps=depth, num_verify_tokens=num_draft_token, ) first_rank_print("=========== build tree kernel efficient ==========") # first_rank_print(f"{tree_mask=}", flush=True) first_rank_print(f"{position=}", flush=True) first_rank_print(f"{retrive_index=}", flush=True) first_rank_print(f"{retrive_next_token=}", flush=True) first_rank_print(f"{retrive_next_sibling=}", flush=True) first_rank_print(f"{draft_tokens=}", flush=True) assert position.tolist() == [5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 14] assert retrive_index.tolist() == [ [0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15], ] assert retrive_next_token.tolist() == [ [1, 3, 4, 5, 6, 7, -1, -1], [1, 2, -1, 6, -1, -1, 7, -1], ] assert retrive_next_sibling.tolist() == [ [-1, 2, -1, -1, -1, -1, -1, -1], [-1, -1, 3, 4, 5, -1, -1, -1], ] assert draft_tokens.tolist() == [ 29974, 29896, 29906, 29889, 29974, 29946, 29896, 29946, 13, 13, 22550, 4136, 16492, 8439, 29871, 29941, ] if __name__ == "__main__": test_build_tree_kernel_efficient()