import argparse import ast import asyncio import json import re import time import numpy as np import sglang as sgl from sglang.api import set_default_backend from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint from sglang.utils import download_and_cache_file, dump_state_text, read_jsonl INVALID = -9999999 def get_one_example(lines, i, include_answer): ret = "Question: " + lines[i]["question"] + "\nAnswer:" if include_answer: ret += " " + lines[i]["answer"] return ret def get_few_shot_examples(lines, k): ret = "" for i in range(k): ret += get_one_example(lines, i, True) + "\n\n" return ret def get_answer_value(answer_str): answer_str = answer_str.replace(",", "") numbers = re.findall(r"\d+", answer_str) if len(numbers) < 1: return INVALID try: return ast.literal_eval(numbers[-1]) except SyntaxError: return INVALID async def concurrent_generate(engine, prompts, sampling_param): tasks = [] for prompt in prompts: tasks.append(asyncio.create_task(engine.async_generate(prompt, sampling_param))) outputs = await asyncio.gather(*tasks) return outputs def run_eval(args): # Select backend engine = sgl.Engine(model_path=args.model_path, log_level="error") if args.local_data_path is None: # Read data url = "https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/test.jsonl" filename = download_and_cache_file(url) else: filename = args.local_data_path lines = list(read_jsonl(filename)) # Construct prompts num_questions = args.num_questions num_shots = args.num_shots few_shot_examples = get_few_shot_examples(lines, num_shots) questions = [] labels = [] for i in range(len(lines[:num_questions])): questions.append(get_one_example(lines, i, False)) labels.append(get_answer_value(lines[i]["answer"])) assert all(l != INVALID for l in labels) arguments = [{"question": q} for q in questions] # construct the prompts prompts = [] for i, arg in enumerate(arguments): q = arg["question"] prompt = few_shot_examples + q prompts.append(prompt) sampling_param = { "stop": ["Question", "Assistant:", "<|separator|>"], "max_new_tokens": 512, "temperature": 0, } # Run requests tic = time.time() loop = asyncio.get_event_loop() outputs = loop.run_until_complete( concurrent_generate(engine, prompts, sampling_param) ) # End requests latency = time.time() - tic # Shutdown the engine engine.shutdown() # Parse output preds = [] for output in outputs: preds.append(get_answer_value(output["text"])) # Compute accuracy acc = np.mean(np.array(preds) == np.array(labels)) invalid = np.mean(np.array(preds) == INVALID) # Compute speed num_output_tokens = sum( output["meta_info"]["completion_tokens"] for output in outputs ) output_throughput = num_output_tokens / latency # Print results print(f"Accuracy: {acc:.3f}") print(f"Invalid: {invalid:.3f}") print(f"Latency: {latency:.3f} s") print(f"Output throughput: {output_throughput:.3f} token/s") return { "accuracy": acc, "latency": latency, "output_throughput": output_throughput, } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model-path", type=str, default="meta-llama/Meta-Llama-3.1-8B-Instruct" ) parser.add_argument("--local-data-path", type=Optional[str], default=None) parser.add_argument("--num-shots", type=int, default=5) parser.add_argument("--num-questions", type=int, default=200) args = parser.parse_args() metrics = run_eval(args)