# Adapted from https://github.com/flashinfer-ai/flashinfer/blob/4e8eb1879f9c3ba6d75511e5893183bf8f289a62/tests/test_bmm_fp8.py import pytest import torch import torch.nn.functional as F from sgl_kernel import bmm_fp8 def to_float8(x, dtype=torch.float8_e4m3fn): finfo = torch.finfo(dtype) min_val, max_val = x.aminmax() amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12) scale = finfo.max / amax x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max) return x_scl_sat.to(dtype), scale.float().reciprocal() @pytest.mark.parametrize("input_dtype", [torch.float8_e4m3fn, torch.float8_e5m2]) @pytest.mark.parametrize("mat2_dtype", [torch.float8_e4m3fn, torch.float8_e5m2]) @pytest.mark.parametrize("res_dtype", [torch.bfloat16, torch.float16]) def test_bmm_fp8(input_dtype, mat2_dtype, res_dtype): if input_dtype == torch.float8_e5m2 and mat2_dtype == torch.float8_e5m2: pytest.skip("Invalid combination: both input and mat2 are e5m2") input = torch.randn([16, 48, 64], device="cuda", dtype=torch.bfloat16) input_fp8, input_inv_s = to_float8(input, dtype=input_dtype) # mat2 row major -> column major mat2 = torch.randn([16, 80, 64], device="cuda", dtype=torch.bfloat16).transpose( -2, -1 ) mat2_fp8, mat2_inv_s = to_float8(mat2, dtype=mat2_dtype) res = torch.empty([16, 48, 80], device="cuda", dtype=res_dtype) bmm_fp8(input_fp8, mat2_fp8, input_inv_s, mat2_inv_s, res_dtype, res) reference = torch.bmm(input, mat2) cos_sim = F.cosine_similarity(reference.reshape(-1), res.reshape(-1), dim=0) assert cos_sim > 0.99 if __name__ == "__main__": pytest.main([__file__])