# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import multiprocessing as mp import unittest import torch from transformers import AutoProcessor from sglang.srt.utils import load_image from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner from sglang.test.test_utils import get_similarities TEXTS = "two Subway Series sandwiches with meats, cheese, lettuce, tomatoes, and onions on a black background, accompanied by the Subway Series logo, highlighting a new sandwich series." IMAGES = "https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild/resolve/main/images/023.jpg" MODELS = [ ("openai/clip-vit-large-patch14-336", 1e-5), ] TORCH_DTYPES = [torch.float16] class TestClipModels(unittest.TestCase): @classmethod def setUpClass(cls): mp.set_start_method("spawn", force=True) def assert_close_embeddings(self, model, prefill_tolerance, torch_dtype): with HFRunner( model, torch_dtype=torch_dtype, model_type="embedding", ) as hf_runner: hf_text_embeds = hf_runner.forward(prompts=TEXTS) hf_image_embeds = hf_runner.forward(image_data=IMAGES) with SRTRunner( model, tp_size=1, torch_dtype=torch_dtype, model_type="embedding", ) as srt_runner: text_embeds = srt_runner.forward(prompts=TEXTS) image_embeds = srt_runner.forward(prompts="padding", image_data=IMAGES) text_similarity = get_similarities( text_embeds.embed_logits[0], hf_text_embeds.embed_logits[0] ) image_similarity = get_similarities( image_embeds.embed_logits[0], hf_image_embeds.embed_logits[0] ) print("text similarity diff", abs(text_similarity - 1)) print("image similarity diff", abs(image_similarity - 1)) assert torch.all( abs(text_similarity - 1) < prefill_tolerance ), "embeddings are not all close" assert torch.all( abs(image_similarity - 1) < prefill_tolerance ), "embeddings are not all close" def test_accuracy(self): for model, prefill_tolerance in MODELS: for torch_dtype in TORCH_DTYPES: self.assert_close_embeddings(model, prefill_tolerance, torch_dtype) if __name__ == "__main__": unittest.main()