import unittest from sglang.test.test_utils import ( DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, DEFAULT_FP8_MODEL_NAME_FOR_TEST, DEFAULT_MODEL_NAME_FOR_TEST, DEFAULT_MOE_MODEL_NAME_FOR_TEST, CustomTestCase, is_in_ci, run_bench_serving, write_github_step_summary, ) class TestBenchServing(CustomTestCase): def test_offline_throughput_default(self): res = run_bench_serving( model=DEFAULT_MODEL_NAME_FOR_TEST, num_prompts=500, request_rate=float("inf"), other_server_args=[], ) if is_in_ci(): write_github_step_summary( f"### test_offline_throughput_default\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 3350) def test_offline_throughput_non_stream_small_batch_size(self): res = run_bench_serving( model=DEFAULT_MODEL_NAME_FOR_TEST, num_prompts=200, request_rate=float("inf"), other_server_args=["--max-running-requests", "10"], dataset_name="sharegpt", random_input_len=None, random_output_len=None, disable_stream=True, need_warmup=True, ) if is_in_ci(): write_github_step_summary( f"### test_offline_throughput_non_stream_small_batch_size\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) # There is a regression with torch 2.5 # This number was 950 for torch 2.4 self.assertGreater(res["output_throughput"], 1000) def test_offline_throughput_without_radix_cache(self): res = run_bench_serving( model=DEFAULT_MODEL_NAME_FOR_TEST, num_prompts=500, request_rate=float("inf"), other_server_args=["--disable-radix-cache"], ) if is_in_ci(): write_github_step_summary( f"### test_offline_throughput_without_radix_cache\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 3350) def test_offline_throughput_without_chunked_prefill(self): res = run_bench_serving( model=DEFAULT_MODEL_NAME_FOR_TEST, num_prompts=500, request_rate=float("inf"), other_server_args=["--chunked-prefill-size", "-1"], ) if is_in_ci(): write_github_step_summary( f"### test_offline_throughput_without_chunked_prefill\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 2600) def test_offline_throughput_with_triton_attention_backend(self): res = run_bench_serving( model=DEFAULT_MODEL_NAME_FOR_TEST, num_prompts=500, request_rate=float("inf"), other_server_args=[ "--attention-backend", "triton", "--context-length", "8192", ], ) if is_in_ci(): write_github_step_summary( f"### test_offline_throughput_with_triton_attention_backend\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 3450) def test_offline_throughput_default_fp8(self): res = run_bench_serving( model=DEFAULT_FP8_MODEL_NAME_FOR_TEST, num_prompts=500, request_rate=float("inf"), other_server_args=[], ) if is_in_ci(): write_github_step_summary( f"### test_offline_throughput_default_fp8\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 3900) def test_online_latency_default(self): res = run_bench_serving( model=DEFAULT_MODEL_NAME_FOR_TEST, num_prompts=100, request_rate=1, other_server_args=[], ) if is_in_ci(): write_github_step_summary( f"### test_online_latency_default\n" f'median_e2e_latency_ms : {res["median_e2e_latency_ms"]:.2f} ms\n' ) self.assertLess(res["median_e2e_latency_ms"], 11000) self.assertLess(res["median_ttft_ms"], 86) self.assertLess(res["median_itl_ms"], 10) def test_online_latency_eagle(self): res = run_bench_serving( model=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, num_prompts=300, request_rate=8, sharegpt_context_len=3072, disable_ignore_eos=True, dataset_name="sharegpt", other_server_args=[ "--speculative-algorithm", "EAGLE", "--speculative-draft-model-path", DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, "--speculative-num-steps", "5", "--speculative-eagle-topk", "4", "--speculative-num-draft-tokens", "16", "--mem-fraction-static", "0.7", ], need_warmup=True, seed=42, ) if is_in_ci(): write_github_step_summary( f"### test_online_latency_eagle\n" f'median_e2e_latency_ms : {res["median_e2e_latency_ms"]:.2f} ms\n' f'accept_length : {res["accept_length"]:.2f} \n' ) self.assertLess(res["median_e2e_latency_ms"], 900) self.assertGreater(res["accept_length"], 2.99) def test_moe_offline_throughput_default(self): res = run_bench_serving( model=DEFAULT_MOE_MODEL_NAME_FOR_TEST, num_prompts=300, request_rate=float("inf"), other_server_args=["--tp", "2"], ) if is_in_ci(): write_github_step_summary( f"### test_moe_offline_throughput_default\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 2200) def test_moe_offline_throughput_without_radix_cache(self): res = run_bench_serving( model=DEFAULT_MOE_MODEL_NAME_FOR_TEST, num_prompts=300, request_rate=float("inf"), other_server_args=["--tp", "2", "--disable-radix-cache"], ) if is_in_ci(): write_github_step_summary( f"### test_moe_offline_throughput_without_radix_cache\n" f'Output throughput: {res["output_throughput"]:.2f} token/s\n' ) self.assertGreater(res["output_throughput"], 2200) if __name__ == "__main__": unittest.main()