import os import unittest from types import SimpleNamespace from sglang.srt.utils import kill_process_tree from sglang.test.run_eval import run_eval from sglang.test.test_utils import ( DEFAULT_MODEL_NAME_FOR_TEST, DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, DEFAULT_URL_FOR_TEST, CustomTestCase, popen_launch_server, ) class TestDoubleSparsity(CustomTestCase): @classmethod def setUpClass(cls): cls.model = DEFAULT_MODEL_NAME_FOR_TEST cls.base_url = DEFAULT_URL_FOR_TEST dirpath = os.path.dirname(__file__) config_file = os.path.join( dirpath, "double-sparsity-config-Llama-3.1-8B-Instruct.json" ) # NOTE: Generate the config file by running https://github.com/andy-yang-1/DoubleSparse/blob/main/evaluation/group_channel_config.py cls.process = popen_launch_server( cls.model, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, other_args=[ "--enable-double-sparsity", "--ds-channel-config-path", config_file, "--ds-heavy-channel-num", "32", "--ds-heavy-channel-type", "k", "--ds-heavy-token-num", "512", "--ds-sparse-decode-threshold", "0", "--max-total-tokens", "200000", ], ) @classmethod def tearDownClass(cls): kill_process_tree(cls.process.pid) def test_mmlu(self): args = SimpleNamespace( base_url=self.base_url, model=self.model, eval_name="mmlu", num_examples=64, num_threads=32, ) metrics = run_eval(args) self.assertGreaterEqual(metrics["score"], 0.65) if __name__ == "__main__": unittest.main()