import gc import time import unittest import torch import sglang as sgl from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST, CustomTestCase def test_update_weights_from_tensor(tp_size): assert torch.cuda.device_count() >= tp_size, f"At least {tp_size} GPUs are required" torch.cuda.empty_cache() engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST, tp_size=tp_size) param_names = [f"model.layers.{i}.mlp.up_proj.weight" for i in range(6, 16)] _check_param(engine, param_names[0], [0.0087, -0.0214, -0.0004, 0.0039, 0.0110]) memory_before = torch.cuda.memory_allocated() new_tensor = torch.full((16384, 2048), 1.5, device="cuda") time_start = time.time() engine.update_weights_from_tensor([(x, new_tensor) for x in param_names]) print(f"Time delta: {time.time() - time_start:.03f}") for param_name in param_names[:3]: _check_param(engine, param_name, [1.5] * 5) engine.shutdown() del new_tensor gc.collect() torch.cuda.ipc_collect() torch.cuda.empty_cache() memory_after = torch.cuda.memory_allocated() assert ( memory_after <= memory_before + 1024 ), f"Memory leak detected: {memory_after - memory_before} bytes" class TestUpdateWeightsFromTensor(CustomTestCase): def test_update_weights_from_tensor(self): tp_sizes = [1, 2] for tp_size in tp_sizes: if torch.cuda.device_count() < tp_size: continue with self.subTest(tp_size=tp_size): test_update_weights_from_tensor(tp_size) def test_update_weights_from_tensor_load_format_direct(self): engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST) write_param_names = [ f"model.layers.{i}.self_attn.qkv_proj.weight" for i in range(6, 16) ] read_param_names = [ f"model.layers.{i}.self_attn.k_proj.weight" for i in range(6, 16) ] _check_param( engine, read_param_names[0], [-0.0198, 0.0227, 0.0168, 0.0232, -0.0178] ) new_tensor = torch.full((3072, 2048), 1.5) engine.update_weights_from_tensor( [ (write_param_name, new_tensor.clone()) for write_param_name in write_param_names ], load_format="direct", ) for read_param_name in read_param_names[:3]: _check_param(engine, read_param_name, [1.5] * 5) engine.shutdown() def _check_param(engine, param_name, expect_values): actual_values = torch.tensor(engine.get_weights_by_name(param_name))[0, :5] assert torch.allclose( actual_values, torch.tensor(expect_values), atol=0.002 ), f"{actual_values=}" if __name__ == "__main__": unittest.main()