""" Usage: python3 -m unittest test_vision_chunked_prefill.TestVisionChunkedPrefill.test_chunked_prefill """ import base64 import io import os import unittest from concurrent.futures import ThreadPoolExecutor from typing import Union import numpy as np import requests from PIL import Image from sglang.srt.utils import kill_process_tree from sglang.test.test_utils import ( DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, DEFAULT_URL_FOR_TEST, CustomTestCase, popen_launch_server, ) class TestVisionChunkedPrefill(CustomTestCase): def prepare_video_messages(self, video_path, max_frames_num=8): # We import decord here to avoid a strange Segmentation fault (core dumped) issue. # The following import order will cause Segmentation fault. # import decord # from transformers import AutoTokenizer from decord import VideoReader, cpu vr = VideoReader(video_path, ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace( 0, total_frame_num - 1, max_frames_num, dtype=int ) frame_idx = uniform_sampled_frames.tolist() frames = vr.get_batch(frame_idx).asnumpy() base64_frames = [] for frame in frames: pil_img = Image.fromarray(frame) buff = io.BytesIO() pil_img.save(buff, format="JPEG") base64_str = base64.b64encode(buff.getvalue()).decode("utf-8") base64_frames.append(base64_str) messages = [{"role": "user", "content": []}] frame_format = { "type": "image_url", "image_url": {"url": "data:image/jpeg;base64,{}"}, "modalities": "video", } for base64_frame in base64_frames: frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format( base64_frame ) messages[0]["content"].append(frame_format.copy()) prompt = {"type": "text", "text": "Please describe the video briefly."} messages[0]["content"].append(prompt) return messages def get_prompt_from_messages(self, messages): text = ( "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" "<|im_start|>user\n" ) image_data = [] for content in messages[0]["content"]: if content["type"] == "image_url": text += "\n" image_data.append(content["image_url"]["url"]) text += "Please describe the video briefly.<|im_end|>\n<|im_start|>assistant\n" return text, image_data def generate(self, text, image_data): response = requests.post( self.base_url + "/generate", json={ "text": text, "image_data": image_data, "sampling_params": { "temperature": 0, "max_new_tokens": 32, "no_stop_trim": True, "skip_special_tokens": False, }, "modalities": ["multi-images"], }, ).json() return response["text"] def generate_for_video(self, batch, num_frame) -> Union[str, list[str]]: # prepare the video input about Steven introducing ipod nano url = "https://raw.githubusercontent.com/evolvinglmms-lab/sglang/dev/onevision_local/assets/jobs.mp4" cache_dir = os.path.expanduser("~/.cache") file_path = os.path.join(cache_dir, "jobs.mp4") os.makedirs(cache_dir, exist_ok=True) if not os.path.exists(file_path): response = requests.get(url) response.raise_for_status() with open(file_path, "wb") as f: f.write(response.content) if not batch: assert isinstance(num_frame, int) messages = self.prepare_video_messages(file_path, max_frames_num=num_frame) text, image_data = self.get_prompt_from_messages(messages) return self.generate(text, image_data) else: assert isinstance(num_frame, list) func_args = [] for max_frames_num in num_frame: messages = self.prepare_video_messages( file_path, max_frames_num=max_frames_num, ) text, image_data = self.get_prompt_from_messages(messages) func_args.append((text, image_data)) with ThreadPoolExecutor(max_workers=10) as executor: responses = list(executor.map(lambda p: self.generate(*p), func_args)) return responses def run_generate(self, chunked_prefill_size, batch, num_frame): # launch server model = "lmms-lab/llava-onevision-qwen2-7b-ov" # model = "meta-llama/Llama-3.2-11B-Vision-Instruct" self.base_url = DEFAULT_URL_FOR_TEST process = popen_launch_server( model, self.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, other_args=[ "--chunked-prefill-size", f"{chunked_prefill_size}", ], ) try: return self.generate_for_video(batch, num_frame) finally: kill_process_tree(process.pid) def test_chunked_prefill(self): output_chunked = self.run_generate( chunked_prefill_size=1024, batch=False, num_frame=1 ) output_no_chunked = self.run_generate( chunked_prefill_size=-1, batch=False, num_frame=1 ) print("output with chunked prefill:") print(output_chunked) print("output without chunked prefill:") print(output_no_chunked) assert output_chunked == output_no_chunked output_chunked = self.run_generate( chunked_prefill_size=1024, batch=True, num_frame=[2, 6, 8, 10] ) output_no_chunked = self.run_generate( chunked_prefill_size=-1, batch=True, num_frame=[2, 6, 8, 10] ) print("output with chunked prefill:") print(output_chunked) print("output without chunked prefill:") print(output_no_chunked) assert output_chunked == output_no_chunked if __name__ == "__main__": unittest.main()