import argparse import torch import triton from vllm._custom_ops import scaled_int8_quant as vllm_scaled_int8_quant from sglang.srt.layers.quantization.int8_kernel import per_token_quant_int8 @torch.compile(backend="inductor") def torch_int8_quant(x): int8_max = torch.iinfo(torch.int8).max abs_max = x.abs().max(dim=-1, keepdim=True).values scales = abs_max.to(torch.float32) / float(int8_max) q_x = (x / scales).round().to(torch.int8) return q_x, scales def _test_accuracy_once(M, K, input_dtype, device): x = torch.randn(M, K, dtype=input_dtype, device=device) * 5000 out, scales, _ = vllm_scaled_int8_quant(x, symmetric=True) out1, scales1 = per_token_quant_int8(x) out2, scales2 = torch_int8_quant(x) torch.testing.assert_close(out, out2, atol=1, rtol=0) torch.testing.assert_close(out, out1, atol=1, rtol=0) torch.testing.assert_close(scales, scales2) torch.testing.assert_close(scales1, scales2) print(f"M: {M}, K: {K}, type: {input_dtype} OK") def test_accuracy(): Ms = [1, 13, 128, 1024, 2048, 4096] Ks = [512, 1024, 2048, 8192] input_dtypes = [torch.float16, torch.bfloat16] for M in Ms: for K in Ks: for input_dtype in input_dtypes: _test_accuracy_once(M, K, input_dtype, "cuda") @triton.testing.perf_report( triton.testing.Benchmark( x_names=["batch_size"], x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048], x_log=False, line_arg="provider", line_vals=["vllm op", "triton", "torch.compile"], line_names=["vllm op", "triton", "torch.compile"], styles=[("blue", "-"), ("orange", "-"), ("red", "-")], ylabel="ms", plot_name="int8 per token quant", args={}, ) ) def benchmark(batch_size, provider): M, K = batch_size, 16384 x = torch.randn(M, K, dtype=torch.float16, device="cuda") * 1000 quantiles = [0.5, 0.2, 0.8] if provider == "vllm op": ms, min_ms, max_ms = triton.testing.do_bench( lambda: vllm_scaled_int8_quant(x, symmetric=True), quantiles=quantiles, ) if provider == "triton": ms, min_ms, max_ms = triton.testing.do_bench( lambda: per_token_quant_int8(x), quantiles=quantiles, ) if provider == "torch.compile": ms, min_ms, max_ms = triton.testing.do_bench( lambda: torch_int8_quant(x), quantiles=quantiles, ) return ms, min_ms, max_ms if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--save_path", type=str, default="./bench_int8_quant_res", help="Path to save int8 quant benchmark results", ) args = parser.parse_args() test_accuracy() benchmark.run(print_data=True, show_plots=True, save_path=args.save_path)