# Copyright 2025 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import argparse import json import multiprocessing as mp import os import time from datetime import datetime from typing import Any, Dict, List import torch import triton from tqdm import tqdm mp.set_start_method("spawn", force=True) from sglang.srt.layers.quantization.fp8_kernel import ( _w8a8_block_fp8_matmul, _w8a8_block_fp8_matmul_unrolledx4, ) from sglang.srt.layers.quantization.int8_kernel import _w8a8_block_int8_matmul from sglang.srt.utils import get_device_core_count, get_device_name, is_hip is_hip_ = is_hip() DTYPE_MAP = { "float32": torch.float32, "float16": torch.float16, "half": torch.half, "bfloat16": torch.bfloat16, } def w8a8_block_matmul( A: torch.Tensor, B: torch.Tensor, As: torch.Tensor, Bs: torch.Tensor, block_size: List[int], config: Dict[str, Any], output_dtype: torch.dtype = torch.float16, ) -> torch.Tensor: """This function performs matrix multiplication with block-wise quantization. It takes two input tensors `A` and `B` with scales `As` and `Bs`. The output is returned in the specified `output_dtype`. Args: A: The input tensor, e.g., activation. B: The input tensor, e.g., weight. As: The per-token-group quantization scale for `A`. Bs: The per-block quantization scale for `B`. block_size: The block size for per-block quantization. It should be 2-dim, e.g., [128, 128]. output_dytpe: The dtype of the returned tensor. Returns: torch.Tensor: The result of matmul. """ assert len(block_size) == 2 block_n, block_k = block_size[0], block_size[1] assert A.shape[-1] == B.shape[-1] assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous() assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1] M = A.numel() // A.shape[-1] assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2 N, K = B.shape assert triton.cdiv(N, block_n) == Bs.shape[0] assert triton.cdiv(K, block_k) == Bs.shape[1] C_shape = A.shape[:-1] + (N,) C = A.new_empty(C_shape, dtype=output_dtype) def grid(META): return ( triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]), ) # Use manually unrolledx4 kernel on AMD GPU when the grid size is small. # Empirical testing shows the sweet spot lies when it's less than the # of # compute units available on the device. num_workgroups = triton.cdiv(M, config["BLOCK_SIZE_M"]) * triton.cdiv( N, config["BLOCK_SIZE_N"] ) if A.dtype == torch.float8_e4m3fnuz or A.dtype == torch.float8_e4m3fn: kernel = ( _w8a8_block_fp8_matmul_unrolledx4 if (is_hip_ == True and num_workgroups <= get_device_core_count()) else _w8a8_block_fp8_matmul ) else: kernel = _w8a8_block_int8_matmul kernel[grid]( A, B, C, As, Bs, M, N, K, block_n, block_k, A.stride(-2), A.stride(-1), B.stride(1), B.stride(0), C.stride(-2), C.stride(-1), As.stride(-2), As.stride(-1), Bs.stride(1), Bs.stride(0), **config, ) return C def get_rocm_configs_compute_bound(): configs = [] waves_per_eu_range = 0 for num_stages in [2]: for block_m in [32, 64, 128, 256]: for block_k in [32, 64, 128, 256]: for block_n in [16, 32, 64, 128, 256]: for num_warps in [4, 8]: for group_size in [1, 4, 8, 16, 32]: configs.append( { "BLOCK_SIZE_M": block_m, "BLOCK_SIZE_N": block_n, "BLOCK_SIZE_K": block_k, "GROUP_SIZE_M": group_size, "num_warps": num_warps, "num_stages": num_stages, "waves_per_eu": waves_per_eu_range, } ) return configs def get_configs_compute_bound(): configs = [] if is_hip_: configs = get_rocm_configs_compute_bound() else: for num_stages in [2, 3, 4, 5]: for block_m in [16, 32, 64, 128, 256]: for block_k in [64, 128]: for block_n in [32, 64, 128, 256]: for num_warps in [4, 8]: for group_size in [1, 16, 32, 64]: configs.append( { "BLOCK_SIZE_M": block_m, "BLOCK_SIZE_N": block_n, "BLOCK_SIZE_K": block_k, "GROUP_SIZE_M": group_size, "num_warps": num_warps, "num_stages": num_stages, } ) return configs def get_weight_shapes(tp_size): # NOTE(HandH1998): The weight shapes only works for DeepSeek-V3. Modify them, if you tune for another different model. # cannot TP total = [ (512 + 64, 7168), ((128 + 64) * 128, 7168), (128 * (128 + 128), 512), (7168, 16384), (7168, 18432), ] # N can TP n_tp = [ (18432 * 2, 7168), ((128 + 64) * 128, 7168), (128 * (128 + 128), 512), (24576, 1536), (4096, 7168), ] # K can TP k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)] weight_shapes = [] for t in total: weight_shapes.append(t) for n_t in n_tp: new_t = (n_t[0] // tp_size, n_t[1]) weight_shapes.append(new_t) for k_t in k_tp: new_t = (k_t[0], k_t[1] // tp_size) weight_shapes.append(new_t) return weight_shapes def benchmark_config( A, B, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10 ): def run(): w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype) torch.cuda.synchronize() # JIT complication & warmup for _ in range(5): run() torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) latencies: List[float] = [] for i in range(num_iters): torch.cuda.synchronize() start_event.record() run() end_event.record() end_event.synchronize() latencies.append(start_event.elapsed_time(end_event)) avg = sum(latencies) / (num_iters * 10) * 1000 # us return avg def tune(M, N, K, block_size, out_dtype, search_space, input_type): factor_for_scale = 1e-2 if input_type == "fp8": fp8_info = torch.finfo( torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn ) fp8_max, fp8_min = fp8_info.max, fp8_info.min A_fp32 = ( (torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max ) A = A_fp32.clamp(min=fp8_min, max=fp8_max).to( torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn ) B_fp32 = ( (torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max ) B = B_fp32.clamp(min=fp8_min, max=fp8_max).to( torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn ) else: int8_info = torch.iinfo(torch.int8) int8_max, int8_min = int8_info.max, int8_info.min A_fp32 = ( (torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * int8_max ) A = A_fp32.clamp(min=int8_min, max=int8_max).to(torch.int8) B_fp32 = ( (torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * int8_max ) B = B_fp32.clamp(min=int8_min, max=int8_max).to(torch.int8) block_n, block_k = block_size[0], block_size[1] n_tiles = (N + block_n - 1) // block_n k_tiles = (K + block_k - 1) // block_k As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale Bs = ( torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale ) best_config = None best_time = float("inf") for config in tqdm(search_space): try: kernel_time = benchmark_config( A, B, As, Bs, block_size, config, out_dtype, num_iters=10, ) except triton.runtime.autotuner.OutOfResources: # Some configurations may be invalid and fail to compile. continue if kernel_time < best_time: best_time = kernel_time best_config = config now = datetime.now() print(f"{now.ctime()}] Completed tuning for batch_size={M}") assert best_config is not None return best_config def save_configs( N, K, block_n, block_k, configs, save_path, input_type="fp8", ) -> None: os.makedirs(save_path, exist_ok=True) device_name = get_device_name().replace(" ", "_") json_file_name = f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,block_shape=[{block_n}, {block_k}].json" config_file_path = os.path.join(save_path, json_file_name) print(f"Writing best config to {config_file_path}...") with open(config_file_path, "w") as f: json.dump(configs, f, indent=4) f.write("\n") def get_available_gpu_count(): """Get the number of available GPUs.""" return torch.cuda.device_count() def tune_on_gpu(args_dict): """Run tuning on a specific GPU.""" gpu_id = args_dict["gpu_id"] batch_sizes = args_dict["batch_sizes"] weight_shapes = args_dict["weight_shapes"] args = args_dict["args"] torch.cuda.set_device(gpu_id) print(f"Starting tuning on GPU {gpu_id} with batch sizes {batch_sizes}") block_n = args.block_n block_k = args.block_k out_dtype = DTYPE_MAP[args.out_dtype] save_path = args.save_path input_type = args.input_type search_space = get_configs_compute_bound() search_space = [ config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0 ] start = time.time() results = {} for shape in tqdm(weight_shapes, desc=f"GPU {gpu_id} - Shapes"): N, K = shape[0], shape[1] print(f"[GPU {gpu_id}] Tune for weight shape of `N: {N}, K: {K}`") benchmark_results = [ tune( batch_size, N, K, [block_n, block_k], out_dtype, search_space, input_type, ) for batch_size in tqdm(batch_sizes, desc=f"GPU {gpu_id} - Batch sizes") ] best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)} save_configs(N, K, block_n, block_k, best_configs, save_path, input_type) end = time.time() print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds") def distribute_batch_sizes(batch_sizes, num_gpus): """Distribute batch sizes across available GPUs.""" batches_per_gpu = [] for i in range(num_gpus): start_idx = i * len(batch_sizes) // num_gpus end_idx = (i + 1) * len(batch_sizes) // num_gpus batches_per_gpu.append(batch_sizes[start_idx:end_idx]) return batches_per_gpu def main(args): print(args) num_gpus = get_available_gpu_count() if num_gpus == 0: raise RuntimeError("No GPU available for tuning") print(f"Found {num_gpus} GPUs for parallel tuning") torch.cuda.init() if args.batch_size is None: batch_sizes = [ 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536, 2048, 3072, 4096, ] else: batch_sizes = [args.batch_size] num_gpus = 1 # If only one batch size, use only one GPU weight_shapes = get_weight_shapes(args.tp_size) batches_per_gpu = distribute_batch_sizes(batch_sizes, num_gpus) process_args = [] for gpu_id in range(num_gpus): process_args.append( { "gpu_id": gpu_id, "batch_sizes": batches_per_gpu[gpu_id], "weight_shapes": weight_shapes, # Each GPU processes all weight shapes "args": args, } ) ctx = mp.get_context("spawn") with ctx.Pool(num_gpus) as pool: pool.map(tune_on_gpu, process_args) print("Multi-GPU tuning completed") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--tp-size", "-tp", type=int, default=8) parser.add_argument( "--input-type", type=str, choices=["fp8", "int8"], default="fp8" ) parser.add_argument( "--out-dtype", type=str, choices=["float32", "float16", "bfloat16", "half"], default="float16", ) parser.add_argument("--block-n", type=int, default=128) parser.add_argument("--block-k", type=int, default=128) parser.add_argument("--batch-size", type=int, required=False) parser.add_argument( "--save-path", type=str, default="python/sglang/srt/layers/quantization/configs" ) args = parser.parse_args() main(args)