import argparse import ast import asyncio import json import re import time from concurrent.futures import ThreadPoolExecutor import numpy as np from tqdm import tqdm from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate from sglang.utils import dump_state_text, read_jsonl INVALID = -9999999 def get_answer_value(answer_str): answer_str = answer_str.replace(",", "") numbers = re.findall(r"\d+", answer_str) if len(numbers) < 1: return INVALID try: return ast.literal_eval(numbers[-1]) except SyntaxError: return INVALID prompt_lib = [ "Let us think step by step.", "Approach this methodically. Let's dissect the problem into smaller, more manageable parts.", "It's important to proceed step by step, ensuring accuracy at each stage.", "Take a deep breath and break this down.", "A little bit of arithmetic and a logical approach will help us quickly arrive at the solution to this problem.", "I am extremely good at math.", ] def multi_chain_gsm8k(question, num_chains, call_generate): s = "Question: " + question + "\n" # s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256, # stop="Question", temperature=0) # return s comps = [] for i in range(num_chains): comps.append( call_generate( s + "Answer: " + prompt_lib[i % num_chains], max_tokens=256, temperature=0.3, stop="Question", ) ) s += "Answer: To answer this question, here are some possible solutions. " s += "After considering all of them, I will do a majority vote.\n\n" for i in range(num_chains): s += f"Solution {i+1}: " + comps[i].strip() + "\n\n" s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is " s += call_generate(s, max_tokens=16, temperature=0, stop=None) return s async def multi_chain_gsm8k_async(question, num_chains, call_generate): s = "Question: " + question + "\n" # s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256, # stop="Question", temperature=0) # return s comps = [] for i in range(num_chains): comps.append( await call_generate( s + "Answer: " + prompt_lib[i % num_chains], max_tokens=256, temperature=0.3, stop="Question", ) ) s += "Answer: To answer this question, here are some possible solutions. " s += "After considering all of them, I will do a majority vote.\n\n" for i in range(num_chains): s += f"Solution {i+1}: " + comps[i].strip() + "\n\n" s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is " s += await call_generate(s, max_tokens=16, temperature=0, stop=None) return s def main(args): lines = read_jsonl(args.data_path) # Construct prompts k = args.num_shot questions = [] labels = [] for i in range(len(lines[: args.num_questions])): questions.append(lines[i]["question"]) labels.append(get_answer_value(lines[i]["answer"])) assert all(l != INVALID for l in labels) states = [None] * len(labels) # Select backend call_generate = get_call_generate(args) # Run requests if args.backend != "lmql": # Use thread pool def get_one_answer(i): answer = multi_chain_gsm8k(questions[i], args.num_chains, call_generate) states[i] = answer tic = time.time() if args.parallel == 1: for i in tqdm(range(len(questions))): get_one_answer(i) else: with ThreadPoolExecutor(args.parallel) as executor: list( tqdm( executor.map(get_one_answer, list(range(len(questions)))), total=len(questions), ) ) else: # Use asyncio async def get_one_answer_asyncio(i): answer = await multi_chain_gsm8k_async( questions[i], args.num_chains, call_generate ) states[i] = answer tic = time.time() loop = asyncio.get_event_loop() batches = [ list(range(i, min(i + args.parallel, len(questions)))) for i in range(0, len(questions), args.parallel) ] for bt in tqdm(batches): tasks = [get_one_answer_asyncio(k) for k in bt] loop.run_until_complete(asyncio.gather(*tasks)) latency = time.time() - tic preds = [] for i in range(len(states)): preds.append(get_answer_value(states[i])) # Compute accuracy acc = np.mean(np.array(preds) == np.array(labels)) invalid = np.mean(np.array(preds) == INVALID) print(f"Latency: {latency:.3f}") print(f"Invalid: {invalid:.3f}") print(f"Accuracy: {acc:.3f}") # Write results dump_state_text(f"tmp_output_{args.backend}.txt", states) with open(args.result_file, "a") as fout: value = { "task": "multi_chain_gsm8k", "backend": args.backend, "num_gpus": 1, "latency": round(latency, 3), "accuracy": round(acc, 3), "num_requests": args.num_questions, "other": { "num_questions": args.num_questions, "parallel": args.parallel, }, } fout.write(json.dumps(value) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--num-shot", type=int, default=0) parser.add_argument("--num-chains", type=int, default=5) parser.add_argument("--data-path", type=str, default="test.jsonl") parser.add_argument("--num-questions", type=int, default=50) args = add_common_other_args_and_parse(parser) main(args)