{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# SGLang Native APIs\n", "\n", "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce these following APIs:\n", "\n", "- `/generate` (text generation model)\n", "- `/get_model_info`\n", "- `/get_server_info`\n", "- `/health`\n", "- `/health_generate`\n", "- `/flush_cache`\n", "- `/update_weights`\n", "- `/encode`(embedding model)\n", "- `/classify`(reward model)\n", "- `/start_expert_distribution_record`\n", "- `/stop_expert_distribution_record`\n", "- `/dump_expert_distribution_record`\n", "\n", "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Launch A Server" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import requests\n", "from sglang.test.test_utils import is_in_ci\n", "\n", "if is_in_ci():\n", " from patch import launch_server_cmd\n", "else:\n", " from sglang.utils import launch_server_cmd\n", "\n", "from sglang.utils import wait_for_server, print_highlight, terminate_process\n", "\n", "\n", "server_process, port = launch_server_cmd(\n", " \"python -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --host 0.0.0.0\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate (text generation model)\n", "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](./sampling_params.md)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = f\"http://localhost:{port}/generate\"\n", "data = {\"text\": \"What is the capital of France?\"}\n", "\n", "response = requests.post(url, json=data)\n", "print_highlight(response.json())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Get Model Info\n", "\n", "Get the information of the model.\n", "\n", "- `model_path`: The path/name of the model.\n", "- `is_generation`: Whether the model is used as generation model or embedding model.\n", "- `tokenizer_path`: The path/name of the tokenizer." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = f\"http://localhost:{port}/get_model_info\"\n", "\n", "response = requests.get(url)\n", "response_json = response.json()\n", "print_highlight(response_json)\n", "assert response_json[\"model_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n", "assert response_json[\"is_generation\"] is True\n", "assert response_json[\"tokenizer_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n", "assert response_json.keys() == {\"model_path\", \"is_generation\", \"tokenizer_path\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Get Server Info\n", "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n", "- Note: `get_server_info` merges the following deprecated endpoints:\n", " - `get_server_args`\n", " - `get_memory_pool_size` \n", " - `get_max_total_num_tokens`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# get_server_info\n", "\n", "url = f\"http://localhost:{port}/get_server_info\"\n", "\n", "response = requests.get(url)\n", "print_highlight(response.text)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Health Check\n", "- `/health`: Check the health of the server.\n", "- `/health_generate`: Check the health of the server by generating one token." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = f\"http://localhost:{port}/health_generate\"\n", "\n", "response = requests.get(url)\n", "print_highlight(response.text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = f\"http://localhost:{port}/health\"\n", "\n", "response = requests.get(url)\n", "print_highlight(response.text)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Flush Cache\n", "\n", "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# flush cache\n", "\n", "url = f\"http://localhost:{port}/flush_cache\"\n", "\n", "response = requests.post(url)\n", "print_highlight(response.text)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Update Weights From Disk\n", "\n", "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n", "\n", "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# successful update with same architecture and size\n", "\n", "url = f\"http://localhost:{port}/update_weights_from_disk\"\n", "data = {\"model_path\": \"meta-llama/Llama-3.2-1B\"}\n", "\n", "response = requests.post(url, json=data)\n", "print_highlight(response.text)\n", "assert response.json()[\"success\"] is True\n", "assert response.json()[\"message\"] == \"Succeeded to update model weights.\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# failed update with different parameter size or wrong name\n", "\n", "url = f\"http://localhost:{port}/update_weights_from_disk\"\n", "data = {\"model_path\": \"meta-llama/Llama-3.2-1B-wrong\"}\n", "\n", "response = requests.post(url, json=data)\n", "response_json = response.json()\n", "print_highlight(response_json)\n", "assert response_json[\"success\"] is False\n", "assert response_json[\"message\"] == (\n", " \"Failed to get weights iterator: \"\n", " \"meta-llama/Llama-3.2-1B-wrong\"\n", " \" (repository not found).\"\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Encode (embedding model)\n", "\n", "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.html#openai-apis-embedding) and will raise an error for generation models.\n", "Therefore, we launch a new server to server an embedding model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(server_process)\n", "\n", "embedding_process, port = launch_server_cmd(\n", " \"\"\"\n", "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n", " --host 0.0.0.0 --is-embedding\n", "\"\"\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# successful encode for embedding model\n", "\n", "url = f\"http://localhost:{port}/encode\"\n", "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"text\": \"Once upon a time\"}\n", "\n", "response = requests.post(url, json=data)\n", "response_json = response.json()\n", "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(embedding_process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Classify (reward model)\n", "\n", "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(embedding_process)\n", "\n", "# Note that SGLang now treats embedding models and reward models as the same type of models.\n", "# This will be updated in the future.\n", "\n", "reward_process, port = launch_server_cmd(\n", " \"\"\"\n", "python -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding\n", "\"\"\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer\n", "\n", "PROMPT = (\n", " \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n", ")\n", "\n", "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n", "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n", "\n", "CONVS = [\n", " [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n", " [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n", "]\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n", "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n", "\n", "url = f\"http://localhost:{port}/classify\"\n", "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n", "\n", "responses = requests.post(url, json=data).json()\n", "for response in responses:\n", " print_highlight(f\"reward: {response['embedding'][0]}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(reward_process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Capture expert selection distribution in MoE models\n", "\n", "SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "expert_record_server_process, port = launch_server_cmd(\n", " \"python -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n", "print_highlight(response)\n", "\n", "url = f\"http://localhost:{port}/generate\"\n", "data = {\"text\": \"What is the capital of France?\"}\n", "\n", "response = requests.post(url, json=data)\n", "print_highlight(response.json())\n", "\n", "response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n", "print_highlight(response)\n", "\n", "response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n", "print_highlight(response)\n", "\n", "import glob\n", "\n", "output_file = glob.glob(\"expert_distribution_*.csv\")[0]\n", "with open(output_file, \"r\") as f:\n", " print_highlight(\"Content of dumped record:\")\n", " for line in f:\n", " print_highlight(line.strip())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(expert_record_server_process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Skip Tokenizer and Detokenizer\n", "\n", "SGLang Runtime also supports skip tokenizer and detokenizer. This is useful in cases like integrating with RLHF workflow." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tokenizer_free_server_process, port = launch_server_cmd(\n", " \"\"\"\n", "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --skip-tokenizer-init\n", "\"\"\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Llama-3.2-1B-Instruct\")\n", "\n", "input_text = \"What is the capital of France?\"\n", "\n", "input_tokens = tokenizer.encode(input_text)\n", "print_highlight(f\"Input Text: {input_text}\")\n", "print_highlight(f\"Tokenized Input: {input_tokens}\")\n", "\n", "response = requests.post(\n", " f\"http://localhost:{port}/generate\",\n", " json={\n", " \"input_ids\": input_tokens,\n", " \"sampling_params\": {\n", " \"temperature\": 0,\n", " \"max_new_tokens\": 256,\n", " \"stop_token_ids\": [tokenizer.eos_token_id],\n", " },\n", " \"stream\": False,\n", " },\n", ")\n", "output = response.json()\n", "output_tokens = output[\"output_ids\"]\n", "\n", "output_text = tokenizer.decode(output_tokens, skip_special_tokens=False)\n", "print_highlight(f\"Tokenized Output: {output_tokens}\")\n", "print_highlight(f\"Decoded Output: {output_text}\")\n", "print_highlight(f\"Output Text: {output['meta_info']['finish_reason']}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(tokenizer_free_server_process)" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }