sglang0.4.5.post1/benchmark/hicache/data_processing.py

590 lines
20 KiB
Python

import json
import os
import pickle
import random
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
from nextqa import NExTQALoader
# from nextqa.video import , VideoPrompt
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
from sglang.bench_serving import (
download_and_cache_file,
gen_prompt,
get_gen_prefix_cache_path,
)
from sglang.lang.chat_template import get_chat_template, get_chat_template_by_model_path
from sglang.srt.openai_api.protocol import ChatCompletionMessageContentPart
from sglang.utils import encode_video_base64
# type of content fields, can be only prompts or with images/videos
MsgContent = Union[str, List[ChatCompletionMessageContentPart]]
# A list of all the conversations. Each conversation is a list of
# tuples. If multiturn is not enabled, the length of list is 1,
# containing only the first Q&A pair.
# For the shared prefix workload (synthetic, loogle, nextqa), it
# is a list of conversations sharing the same prefix (synthetic,
# doc, video)
SampleOutput = List[List[Tuple[MsgContent, int, int]]]
def common_filter_chat(
num_requests: int,
new_dataset: List,
tokenizer: PreTrainedTokenizerBase,
min_prompt_len: Optional[int],
min_output_len: Optional[int],
max_prompt_len: Optional[int],
max_output_len: Optional[int],
fixed_output_len: Optional[int],
) -> SampleOutput:
# Filter out sequences that are too long or too short
filtered_dataset: SampleOutput = []
l = 0
input_tokens = 0
output_tokens = 0
while l < num_requests:
for i in range(len(new_dataset)):
if l == num_requests:
break
processed = []
for j in new_dataset[i]:
# Tokenize the prompts and completions.
prompt = j[0]
prompt_token_ids = tokenizer.encode(prompt)
prompt_len = len(prompt_token_ids)
completion = j[1]
completion_token_ids = tokenizer.encode(completion)
output_len = (
len(completion_token_ids)
if fixed_output_len is None
else fixed_output_len
)
if (
min_prompt_len is not None
and prompt_len < min_prompt_len
or min_output_len is not None
and output_len < min_output_len
or max_prompt_len is not None
and prompt_len > max_prompt_len
or max_output_len is not None
and output_len > max_output_len
):
# Prune too short sequences.
continue
input_tokens += prompt_len
output_tokens += output_len
processed.append((prompt, prompt_len, output_len))
filtered_dataset.append(processed)
l += 1
print(f"#Input tokens: {input_tokens}")
print(f"#Output tokens: {output_tokens}")
return filtered_dataset
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
disable_shuffle: bool = False,
enable_multiturn: bool = True,
fixed_output_len: Optional[int] = None,
) -> SampleOutput:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Download sharegpt if necessary
if not os.path.isfile(dataset_path):
dataset_path = download_and_cache_file(SHAREGPT_URL)
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Keep one conversation in one list
new_dataset = []
for data in dataset:
if len(data["conversations"]) % 2 != 0:
continue
if data["conversations"][0]["from"] != "human":
continue
chat = []
total_len = 2
if enable_multiturn:
total_len = len(data["conversations"])
for i in range(0, total_len, 2):
# One user One Assistant
chat.append(
(
data["conversations"][i]["value"],
data["conversations"][i + 1]["value"],
)
)
new_dataset.append(chat)
if not disable_shuffle:
# Shuffle the dataset.
random.shuffle(new_dataset)
# Filter out sequences that are too long or too short
filtered_dataset: SampleOutput = common_filter_chat(
num_requests, new_dataset, tokenizer, 4, 4, None, None, fixed_output_len
)
return filtered_dataset
def sample_ultrachat_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
disable_shuffle: bool = False,
enable_multiturn: bool = True,
fixed_output_len: Optional[int] = None,
) -> SampleOutput:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset
dataset = []
with open(dataset_path) as f:
while True:
line = f.readline()
if not line:
break
dataset.append(json.loads(line))
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["data"]) >= 2]
# Keep one conversation in one list
new_dataset = []
for data in dataset:
if len(data["data"]) % 2 != 0:
continue
chat = []
total_len = 2
if enable_multiturn:
total_len = len(data["data"])
for i in range(0, total_len, 2):
# One user One Assistant
chat.append((data["data"][i], data["data"][i + 1]))
new_dataset.append(chat)
# Shuffle the dataset.
if not disable_shuffle:
random.shuffle(new_dataset)
# Filter out sequences that are too long or too short
filtered_dataset: SampleOutput = common_filter_chat(
num_requests, new_dataset, tokenizer, 4, 4, None, None, fixed_output_len
)
return filtered_dataset
def sample_loogle_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
disable_shuffle: bool = False,
enable_multiturn: bool = True,
enable_shared_prefix: bool = False,
fixed_output_len: Optional[int] = None,
) -> SampleOutput:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset
dataset = []
with open(dataset_path) as f:
while True:
line = f.readline()
if not line:
break
dataset.append(json.loads(line))
# Keep one conversation in one list
new_dataset = []
# TODO: Add shared prefix support for loogle
# NOTE: Now we preprocess it only for chat
for data in dataset:
chat = []
if (
"qa_pairs" not in data
or data["qa_pairs"] == "none"
or len(data["qa_pairs"]) == 0
):
# If Q is none (for summarization),
# We add a question for summarization
# And keep the summary up to 1024 words
chat.append(
(
"Input: "
+ data["input"]
+ " Question: "
+ "Please summarize the input",
data["input"][:1024],
)
)
new_dataset.append(chat)
else:
qa_pairs = eval(data["qa_pairs"])
for i, qa in enumerate(qa_pairs):
if i == 0 or enable_shared_prefix:
# Combine input with the first Q
chat.append(
("Input: " + data["input"] + " Question: " + qa["Q"], qa["A"])
)
elif enable_multiturn:
chat.append((qa["Q"], qa["A"]))
new_dataset.append(chat)
# Shuffle the dataset.
if not disable_shuffle:
random.shuffle(new_dataset)
# Filter out sequences that are too long or too short
filtered_dataset: SampleOutput = common_filter_chat(
num_requests, new_dataset, tokenizer, 4, None, None, None, fixed_output_len
)
return filtered_dataset
def sample_nextqa_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
max_frames: int, # Specific for video
model_path: str,
disable_shuffle: bool = False,
enable_multiturn: bool = True, # No multiturn support for now
backend: str = "sglang-oai",
chat_template_name: Optional[str] = None,
fixed_output_len: Optional[int] = None,
) -> SampleOutput:
"""
Example of messages:
message = {
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": base64_data}},
{"type": "text", "text": video.prompt},
],
}
"""
if fixed_output_len is None:
fixed_output_len = 4096
# TODO: Check for multiturn
dataset = NExTQALoader(video_dir=dataset_path, max_frames=max_frames)
new_dataset = []
for v in dataset:
new_dataset.append(v)
if not disable_shuffle:
random.shuffle(new_dataset)
# TODO: prompt len can get from server side
filtered_dataset = []
l = 0
while l < num_requests:
for i in range(len(new_dataset)):
if l == num_requests:
break
video = new_dataset[i]
# text prompt
prompt = video.prompt
# NOTE: Chat Template is a must for video benchmark because we have to
# add special image token for later expansion
if backend == "sglang" or backend == "sglang-native":
if "chat_template" in tokenizer.init_kwargs:
chat_template = get_chat_template(tokenizer.get_chat_template())
elif chat_template_name is not None:
chat_template = get_chat_template(chat_template_name)
else:
chat_template = get_chat_template_by_model_path(model_path)
prompt = chat_template.image_token + prompt
prompt_token_ids = tokenizer(prompt).input_ids
prompt_len = len(prompt_token_ids)
output_len = fixed_output_len # max output len, not real output len
# video input
base64_data = encode_video_base64(video.path, video.num_frames)
# NOTE: This will be replaced by the expanded length from the server
prompt_len += video.num_frames
# add to content
content = [
{"type": "image_url", "image_url": {"url": base64_data}},
{"type": "text", "text": prompt},
]
filtered_dataset.append([(content, prompt_len, output_len)])
l += 1
return filtered_dataset
def sample_random_requests(
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
dataset_path: str,
disable_shuffle: bool = False,
) -> SampleOutput:
input_lens = np.random.randint(
max(int(input_len * range_ratio), 1),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
)
if True:
# Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens
# Download sharegpt if necessary
if not os.path.isfile(dataset_path):
dataset_path = download_and_cache_file(SHAREGPT_URL)
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
if not disable_shuffle:
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
input_requests: SampleOutput = []
for data in dataset:
i = len(input_requests)
if i == num_prompts:
break
# Tokenize the prompts and completions.
prompt = data[0]
prompt_token_ids = tokenizer.encode(prompt)
prompt_len = len(prompt_token_ids)
# Skip empty prompt
if prompt_len == 0:
continue
if prompt_len > input_lens[i]:
input_ids = prompt_token_ids[: input_lens[i]]
else:
ratio = (input_lens[i] + prompt_len - 1) // prompt_len
input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
prompt = tokenizer.decode(input_ids)
input_requests.append([(prompt, int(input_lens[i]), int(output_lens[i]))])
else:
# Sample token ids from random integers. This can cause some NaN issues.
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode(
[
(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])
]
)
input_requests.append([(prompt, int(input_lens[i]), int(output_lens[i]))])
print(f"#Input tokens: {np.sum(input_lens)}")
print(f"#Output tokens: {np.sum(output_lens)}")
return input_requests
def gen_prompt(tokenizer, token_num):
"""Generate a random prompt of specified token length using tokenizer vocabulary."""
all_available_tokens = list(tokenizer.get_vocab().values())
selected_tokens = random.choices(all_available_tokens, k=token_num)
return tokenizer.decode(selected_tokens)
def get_gen_prefix_cache_path(args, tokenizer):
"""Create cache directory under ~/.cache/sglang/benchmark"""
cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"
# Create a unique cache filename based on the generation parameters
cache_key = (
f"gen_prefix_{args.gen_num_groups}_{args.gen_prompts_per_group}_"
f"{args.gen_system_prompt_len}_{args.gen_question_len}_{args.gen_output_len}_"
f"{tokenizer.__class__.__name__}.pkl"
)
return cache_dir / cache_key
def sample_generated_shared_prefix_requests(
num_groups: int,
prompts_per_group: int,
system_prompt_len: int,
question_len: int,
output_len: int,
tokenizer: PreTrainedTokenizerBase,
args,
disable_shuffle: bool = False,
) -> SampleOutput:
"""Generate benchmark requests with shared system prompts using random tokens and caching."""
cache_path = get_gen_prefix_cache_path(args, tokenizer)
# Try to load from cache first
if cache_path.exists():
print(f"\nLoading cached generated input data from {cache_path}")
with open(cache_path, "rb") as f:
return pickle.load(f)
print("\nGenerating new input data...")
# Generate system prompts for each group
system_prompts = []
for _ in range(num_groups):
system_prompt = gen_prompt(tokenizer, system_prompt_len)
system_prompts.append(system_prompt)
# Generate questions
questions = []
for _ in range(num_groups * prompts_per_group):
question = gen_prompt(tokenizer, question_len)
questions.append(question)
# Combine system prompts with questions
input_requests = []
total_input_tokens = 0
total_output_tokens = 0
for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
system_prompt = system_prompts[group_idx]
input_requests.append([])
for prompt_idx in tqdm(
range(prompts_per_group), desc="Generating questions", leave=False
):
question = questions[group_idx * prompts_per_group + prompt_idx]
full_prompt = f"{system_prompt}\n\n{question}"
prompt_len = len(tokenizer.encode(full_prompt))
input_requests[-1].append((full_prompt, prompt_len, output_len))
total_input_tokens += prompt_len
total_output_tokens += output_len
if not disable_shuffle:
# Shuffle questions
random.shuffle(input_requests)
# Print statistics
print(f"\nGenerated shared prefix dataset statistics:")
print(f"Number of groups: {num_groups}")
print(f"Prompts per group: {prompts_per_group}")
print(f"Total prompts: {len(input_requests) * prompts_per_group}")
print(f"Total input tokens: {total_input_tokens}")
print(f"Total output tokens: {total_output_tokens}")
print(
f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
)
print(
f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
)
# Save to cache
cache_path.parent.mkdir(parents=True, exist_ok=True)
print(f"Caching generated input data to {cache_path}")
with open(cache_path, "wb") as f:
pickle.dump(input_requests, f)
return input_requests
def get_dataset(args, tokenizer):
if args.dataset_name == "sharegpt":
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
disable_shuffle=args.disable_shuffle,
enable_multiturn=args.enable_multiturn,
fixed_output_len=args.fixed_output_len,
)
elif args.dataset_name == "ultrachat":
input_requests = sample_ultrachat_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
disable_shuffle=args.disable_shuffle,
enable_multiturn=args.enable_multiturn,
fixed_output_len=args.fixed_output_len,
)
elif args.dataset_name == "loogle":
input_requests = sample_loogle_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
disable_shuffle=args.disable_shuffle,
enable_multiturn=args.enable_multiturn,
enable_shared_prefix=args.enable_shared_prefix,
fixed_output_len=args.fixed_output_len,
)
elif args.dataset_name == "nextqa":
input_requests = sample_nextqa_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
max_frames=args.max_frames,
model_path=args.model,
disable_shuffle=args.disable_shuffle,
enable_multiturn=args.enable_multiturn,
backend=args.backend,
chat_template_name=args.chat_template,
fixed_output_len=args.fixed_output_len,
)
elif args.dataset_name == "random":
input_requests = sample_random_requests(
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
dataset_path=args.dataset_path,
)
elif args.dataset_name == "generated-shared-prefix":
input_requests = sample_generated_shared_prefix_requests(
num_groups=args.gen_num_groups,
prompts_per_group=args.gen_prompts_per_group,
system_prompt_len=args.gen_system_prompt_len,
question_len=args.gen_question_len,
output_len=args.gen_output_len,
args=args,
tokenizer=tokenizer,
)
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
return input_requests