174 lines
4.9 KiB
Python
174 lines
4.9 KiB
Python
import argparse
|
|
import asyncio
|
|
import json
|
|
import os
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import tiktoken
|
|
from tqdm import tqdm
|
|
|
|
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
|
|
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
|
|
|
|
|
def format_subject(subject):
|
|
l = subject.split("_")
|
|
s = ""
|
|
for entry in l:
|
|
s += " " + entry
|
|
return s
|
|
|
|
|
|
def format_example(df, idx, include_answer=True):
|
|
prompt = df.iloc[idx, 0]
|
|
k = df.shape[1] - 2
|
|
for j in range(k):
|
|
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
|
|
prompt += "\nAnswer:"
|
|
if include_answer:
|
|
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
|
|
return prompt
|
|
|
|
|
|
def gen_prompt(train_df, subject, k=-1):
|
|
prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(
|
|
format_subject(subject)
|
|
)
|
|
if k == -1:
|
|
k = train_df.shape[0]
|
|
for i in range(k):
|
|
prompt += format_example(train_df, i)
|
|
return prompt
|
|
|
|
|
|
def evaluate(args, subject, dev_df, test_df, call_generate):
|
|
prompts = []
|
|
labels = []
|
|
|
|
# Construct prompts
|
|
k = args.ntrain
|
|
train_prompt = gen_prompt(dev_df, subject, k)
|
|
while len(tokenizer.encode(train_prompt)) > 1536:
|
|
k -= 1
|
|
train_prompt = gen_prompt(dev_df, subject, k)
|
|
|
|
for i in range(test_df.shape[0]):
|
|
prompt_end = format_example(test_df, i, include_answer=False)
|
|
prompt = train_prompt + prompt_end
|
|
prompts.append(prompt)
|
|
|
|
label = test_df.iloc[i, test_df.shape[1] - 1]
|
|
labels.append(label)
|
|
|
|
preds = [None] * len(prompts)
|
|
max_tokens = 1
|
|
|
|
# Run requests
|
|
if args.backend != "lmql":
|
|
# Use thread pool
|
|
def get_one_answer(i):
|
|
pred = call_generate(prompts[i], temperature=0, max_tokens=max_tokens)
|
|
preds[i] = pred.strip()[0]
|
|
|
|
tic = time.time()
|
|
if args.parallel == 1:
|
|
for i in range(len(prompts)):
|
|
get_one_answer(i)
|
|
else:
|
|
with ThreadPoolExecutor(args.parallel) as executor:
|
|
executor.map(get_one_answer, list(range(len(prompts))))
|
|
else:
|
|
# Use asyncio
|
|
async def batched_call(batch_size):
|
|
for i in range(0, len(prompts), batch_size):
|
|
tasks = []
|
|
for p in prompts[i : i + batch_size]:
|
|
tasks.append(call_generate(p, temperature=0, max_tokens=max_tokens))
|
|
rets = await asyncio.gather(*tasks)
|
|
for j in range(len(rets)):
|
|
preds[i + j] = rets[j].strip()[0]
|
|
|
|
tic = time.time()
|
|
asyncio.run(batched_call(batch_size=args.parallel))
|
|
latency = time.time() - tic
|
|
|
|
# Compute accuracy
|
|
cors = [pred == label for pred, label in zip(preds, labels)]
|
|
acc = np.mean(cors)
|
|
cors = np.array(cors)
|
|
|
|
print(
|
|
"Average accuracy {:.3f}, latency {:.2f}, #q: {} - {}".format(
|
|
acc, latency, len(prompts), subject
|
|
)
|
|
)
|
|
|
|
return cors, acc, latency
|
|
|
|
|
|
def main(args):
|
|
subjects = sorted(
|
|
[
|
|
f.split("_test.csv")[0]
|
|
for f in os.listdir(os.path.join(args.data_dir, "test"))
|
|
if "_test.csv" in f
|
|
]
|
|
)
|
|
|
|
all_cors = []
|
|
all_latencies = []
|
|
num_requests = 0
|
|
|
|
# Select backend
|
|
call_generate = get_call_generate(args)
|
|
|
|
for subject in tqdm(subjects[: args.nsub]):
|
|
dev_df = pd.read_csv(
|
|
os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
|
|
)[: args.ntrain]
|
|
test_df = pd.read_csv(
|
|
os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
|
|
)
|
|
|
|
cors, acc, latency = evaluate(args, subject, dev_df, test_df, call_generate)
|
|
all_cors.append(cors)
|
|
all_latencies.append(latency)
|
|
num_requests += len(test_df)
|
|
|
|
total_latency = np.sum(all_latencies)
|
|
print("Total latency: {:.3f}".format(total_latency))
|
|
|
|
weighted_acc = np.mean(np.concatenate(all_cors))
|
|
print("Average accuracy: {:.3f}".format(weighted_acc))
|
|
|
|
# Write results
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "mmlu",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(total_latency, 3),
|
|
"accuracy": round(weighted_acc, 3),
|
|
"num_requests": num_requests,
|
|
"other": {
|
|
"nsub": args.nsub,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ntrain", type=int, default=5)
|
|
parser.add_argument("--data_dir", type=str, default="data")
|
|
parser.add_argument("--nsub", type=int, default=60)
|
|
args = add_common_other_args_and_parse(parser)
|
|
main(args)
|