sglang0.4.5.post1/benchmark/multi_turn_chat/long_prompt_multi_turn.py

130 lines
3.8 KiB
Python

import json
import random
import time
from argparse import ArgumentParser
from pathlib import Path
from tqdm import tqdm
import sglang as sgl
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.test.test_utils import (
add_common_sglang_args_and_parse,
select_sglang_backend,
)
from sglang.utils import dump_state_text
def gen_prompt(tokenizer, token_num):
all_available_tokens = list(tokenizer.get_vocab().values())
selected_tokens = random.choices(all_available_tokens, k=token_num)
ret = tokenizer.decode(selected_tokens)
return ret
def get_cache_path(args):
# Create cache directory under ~/.cache/sglang
cache_dir = Path.home() / ".cache" / "sglang"
# Create a unique cache filename based on the arguments that affect generation
cache_key = f"qa_{args.num_qa}_{args.turns}_{args.system_prompt_len}_{args.len_q}_{args.len_a}_{args.tokenizer.replace('/', '_')}.json"
return cache_dir / cache_key
def gen_arguments(args, tokenizer):
cache_path = get_cache_path(args)
# Try to load from cache first
if cache_path.exists():
print(f"Loading cached arguments from {cache_path}")
with open(cache_path, "r") as f:
return json.load(f)
print("Generating new arguments...")
# First progress bar for system prompts
multi_qas = []
for _ in tqdm(range(args.num_qa), desc="Generating system prompts"):
multi_qas.append(
{"system_prompt": gen_prompt(tokenizer, args.system_prompt_len), "qas": []}
)
# Nested progress bars for QA pairs
for i in tqdm(range(args.num_qa), desc="Generating QA pairs"):
qas = multi_qas[i]["qas"]
for j in range(args.turns):
qas.append(
{
"prompt": gen_prompt(tokenizer, args.len_q),
"new_tokens": args.len_a,
}
)
# Save to cache
cache_path.parent.mkdir(parents=True, exist_ok=True)
with open(cache_path, "w") as f:
json.dump(multi_qas, f)
print(f"Cached arguments saved to {cache_path}")
return multi_qas
@sgl.function
def multi_turns(s, system_prompt, qas):
s += system_prompt
for i, qa in enumerate(qas):
s += qa["prompt"]
s += sgl.gen(max_tokens=qa["new_tokens"], ignore_eos=True)
def main(args):
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
multi_qas = gen_arguments(args, tokenizer)
backend = select_sglang_backend(args)
tic = time.time()
states = multi_turns.run_batch(
multi_qas,
temperature=0,
backend=backend,
num_threads="auto",
progress_bar=True,
)
latency = time.time() - tic
print(f"Latency: {latency:.3f}")
dump_state_text(f"tmp_output_{args.backend}.txt", states)
with open(args.result_file, "a") as fout:
value = {
"task": "multi_turn_system_prompt_chat",
"backend": args.backend,
"latency": round(latency, 3),
"num_requests": args.num_qa,
"num_turns": args.turns,
"other": {
"parallel": args.parallel,
},
}
fout.write(json.dumps(value) + "\n")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--turns", type=int, default=8)
parser.add_argument("--num-qa", type=int, default=128)
parser.add_argument("--system-prompt-len", type=int, default=2048)
parser.add_argument("--len-q", type=int, default=32)
parser.add_argument("--len-a", type=int, default=128)
parser.add_argument(
"--tokenizer", type=str, default="meta-llama/Meta-Llama-3-8B-Instruct"
)
parser.add_argument("--trust-remote-code", action="store_true")
args = add_common_sglang_args_and_parse(parser)
print(args)
main(args)