sglang0.4.5.post1/examples/frontend_language/quick_start/local_example_llava_next.py

79 lines
2.0 KiB
Python

"""
Usage: python3 local_example_llava_next.py
"""
import sglang as sgl
from sglang.lang.chat_template import get_chat_template
@sgl.function
def image_qa(s, image_path, question):
s += sgl.user(sgl.image(image_path) + question)
s += sgl.assistant(sgl.gen("answer"))
def single():
state = image_qa.run(
image_path="images/cat.jpeg", question="What is this?", max_new_tokens=128
)
print(state["answer"], "\n")
def stream():
state = image_qa.run(
image_path="images/cat.jpeg",
question="What is this?",
max_new_tokens=64,
stream=True,
)
for out in state.text_iter("answer"):
print(out, end="", flush=True)
print()
def batch():
states = image_qa.run_batch(
[
{"image_path": "images/cat.jpeg", "question": "What is this?"},
{"image_path": "images/dog.jpeg", "question": "What is this?"},
],
max_new_tokens=128,
)
for s in states:
print(s["answer"], "\n")
if __name__ == "__main__":
import multiprocessing as mp
mp.set_start_method("spawn", force=True)
runtime = sgl.Runtime(model_path="lmms-lab/llama3-llava-next-8b")
runtime.endpoint.chat_template = get_chat_template("llama-3-instruct-llava")
# Or you can use the 72B model
# runtime = sgl.Runtime(model_path="lmms-lab/llava-next-72b", tp_size=8)
# runtime.endpoint.chat_template = get_chat_template("chatml-llava")
sgl.set_default_backend(runtime)
print(f"chat template: {runtime.endpoint.chat_template.name}")
# Or you can use API models
# sgl.set_default_backend(sgl.OpenAI("gpt-4-vision-preview"))
# sgl.set_default_backend(sgl.VertexAI("gemini-pro-vision"))
# Run a single request
print("\n========== single ==========\n")
single()
# Stream output
print("\n========== stream ==========\n")
stream()
# Run a batch of requests
print("\n========== batch ==========\n")
batch()
runtime.shutdown()