sglang0.4.5.post1/examples/frontend_language/usage/openai_chat_speculative.py

156 lines
4.8 KiB
Python

"""
Usage:
***Note: for speculative execution to work, user must put all "gen" in "assistant".
Show in "assistant" the desired answer format. Each "gen" term should have a stop token.
The stream mode is not supported in speculative execution.
E.g.
correct:
sgl.assistant("\nName:" + sgl.gen("name", stop="\n") + "\nBirthday:" + sgl.gen("birthday", stop="\n") + "\nJob:" + sgl.gen("job", stop="\n"))
incorrect:
s += sgl.assistant("\nName:" + sgl.gen("name", stop="\n"))
s += sgl.assistant("\nBirthday:" + sgl.gen("birthday", stop="\n"))
s += sgl.assistant("\nJob:" + sgl.gen("job", stop="\n"))
export OPENAI_API_KEY=sk-******
python3 openai_chat_speculative.py
"""
import sglang as sgl
from sglang import OpenAI, function, set_default_backend
@function(num_api_spec_tokens=256)
def gen_character_spec(s):
s += sgl.system("You are a helpful assistant.")
s += sgl.user("Construct a character within the following format:")
s += sgl.assistant(
"Name: Steve Jobs.\nBirthday: February 24, 1955.\nJob: Apple CEO.\n"
)
s += sgl.user("Please generate new Name, Birthday and Job.\n")
s += sgl.assistant(
"Name:"
+ sgl.gen("name", stop="\n")
+ "\nBirthday:"
+ sgl.gen("birthday", stop="\n")
+ "\nJob:"
+ sgl.gen("job", stop="\n")
)
@function(num_api_spec_tokens=256)
def gen_character_spec_no_few_shot(s):
s += sgl.user("Construct a character. For each field stop with a newline\n")
s += sgl.assistant(
"Name:"
+ sgl.gen("name", stop="\n")
+ "\nAge:"
+ sgl.gen("age", stop="\n")
+ "\nJob:"
+ sgl.gen("job", stop="\n")
)
@function
def gen_character_normal(s):
s += sgl.system("You are a helpful assistant.")
s += sgl.user("What's the answer of 23 + 8?")
s += sgl.assistant(sgl.gen("answer", max_tokens=64))
@function(num_api_spec_tokens=1024)
def multi_turn_question(s, question_1, question_2):
s += sgl.system("You are a helpful assistant.")
s += sgl.user("Answer questions in the following format:")
s += sgl.user(
"Question 1: What is the capital of France?\nQuestion 2: What is the population of this city?\n"
)
s += sgl.assistant(
"Answer 1: The capital of France is Paris.\nAnswer 2: The population of Paris in 2024 is estimated to be around 2.1 million for the city proper.\n"
)
s += sgl.user("Question 1: " + question_1 + "\nQuestion 2: " + question_2)
s += sgl.assistant(
"Answer 1: "
+ sgl.gen("answer_1", stop="\n")
+ "\nAnswer 2: "
+ sgl.gen("answer_2", stop="\n")
)
def test_spec_single_turn():
backend.token_usage.reset()
state = gen_character_spec.run()
for m in state.messages():
print(m["role"], ":", m["content"])
print("\n-- name:", state["name"])
print("-- birthday:", state["birthday"])
print("-- job:", state["job"])
print(backend.token_usage)
def test_inaccurate_spec_single_turn():
state = gen_character_spec_no_few_shot.run()
for m in state.messages():
print(m["role"], ":", m["content"])
print("\n-- name:", state["name"])
print("\n-- age:", state["age"])
print("\n-- job:", state["job"])
def test_normal_single_turn():
state = gen_character_normal.run()
for m in state.messages():
print(m["role"], ":", m["content"])
def test_spec_multi_turn():
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions in the capital of the United States.",
)
for m in state.messages():
print(m["role"], ":", m["content"])
print("\n-- answer_1 --\n", state["answer_1"])
print("\n-- answer_2 --\n", state["answer_2"])
def test_spec_multi_turn_stream():
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions.",
stream=True,
)
for out in state.text_iter():
print(out, end="", flush=True)
if __name__ == "__main__":
backend = OpenAI("gpt-4-turbo")
set_default_backend(backend)
print("\n========== test spec single turn ==========\n")
# expect reasonable answer for each field
test_spec_single_turn()
print("\n========== test inaccurate spec single turn ==========\n")
# expect incomplete or unreasonable answers
test_inaccurate_spec_single_turn()
print("\n========== test normal single turn ==========\n")
# expect reasonable answer
test_normal_single_turn()
print("\n========== test spec multi turn ==========\n")
# expect answer with same format as in the few shot
test_spec_multi_turn()
print("\n========== test spec multi turn stream ==========\n")
# expect error in stream_executor: stream is not supported...
test_spec_multi_turn_stream()