sglang0.4.5.post1/examples/runtime/hidden_states/hidden_states_server.py

82 lines
2.2 KiB
Python

"""
Usage:
python hidden_states_server.py
Note that each time you change the `return_hidden_states` parameter,
the cuda graph will be recaptured, which might lead to a performance hit.
So avoid getting hidden states and completions alternately.
"""
import requests
import torch
from sglang.test.test_utils import is_in_ci
from sglang.utils import terminate_process, wait_for_server
if is_in_ci():
from docs.backend.patch import launch_server_cmd
else:
from sglang.utils import launch_server_cmd
def main():
# Launch the server
server_process, port = launch_server_cmd(
"python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct --host 0.0.0.0"
)
wait_for_server(f"http://localhost:{port}")
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = {
"temperature": 0.8,
"top_p": 0.95,
"max_new_tokens": 10,
}
json_data = {
"text": prompts,
"sampling_params": sampling_params,
"return_hidden_states": True,
}
response = requests.post(
f"http://localhost:{port}/generate",
json=json_data,
)
terminate_process(server_process)
outputs = response.json()
for prompt, output in zip(prompts, outputs):
for i in range(len(output["meta_info"]["hidden_states"])):
output["meta_info"]["hidden_states"][i] = torch.tensor(
output["meta_info"]["hidden_states"][i], dtype=torch.bfloat16
)
print("===============================")
print(
f"Prompt: {prompt}\n"
f"Generated text: {output['text']}\n"
f"Prompt_Tokens: {output['meta_info']['prompt_tokens']}\t"
f"Completion_tokens: {output['meta_info']['completion_tokens']}"
)
print("Hidden states: ")
hidden_states = torch.cat(
[
i.unsqueeze(0) if len(i.shape) == 1 else i
for i in output["meta_info"]["hidden_states"]
]
)
print(hidden_states)
print()
if __name__ == "__main__":
main()