193 lines
5.8 KiB
Python
193 lines
5.8 KiB
Python
"""
|
|
Benchmark the latency of running a single batch with a server.
|
|
|
|
This script launches a server and uses the HTTP interface.
|
|
It accepts server arguments (the same as launch_server.py) and benchmark arguments (e.g., batch size, input lengths).
|
|
|
|
Usage:
|
|
python3 -m sglang.bench_one_batch_server --model meta-llama/Meta-Llama-3.1-8B --batch-size 1 16 64 --input-len 1024 --output-len 8
|
|
|
|
python3 -m sglang.bench_one_batch_server --model None --base-url http://localhost:30000 --batch-size 16 --input-len 1024 --output-len 8
|
|
"""
|
|
|
|
import argparse
|
|
import dataclasses
|
|
import itertools
|
|
import json
|
|
import multiprocessing
|
|
import os
|
|
import time
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from sglang.srt.entrypoints.http_server import launch_server
|
|
from sglang.srt.server_args import ServerArgs
|
|
from sglang.srt.utils import kill_process_tree
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class BenchArgs:
|
|
run_name: str = "default"
|
|
batch_size: Tuple[int] = (1,)
|
|
input_len: Tuple[int] = (1024,)
|
|
output_len: Tuple[int] = (16,)
|
|
result_filename: str = "result.jsonl"
|
|
base_url: str = ""
|
|
skip_warmup: bool = False
|
|
|
|
@staticmethod
|
|
def add_cli_args(parser: argparse.ArgumentParser):
|
|
parser.add_argument("--run-name", type=str, default=BenchArgs.run_name)
|
|
parser.add_argument(
|
|
"--batch-size", type=int, nargs="+", default=BenchArgs.batch_size
|
|
)
|
|
parser.add_argument(
|
|
"--input-len", type=int, nargs="+", default=BenchArgs.input_len
|
|
)
|
|
parser.add_argument(
|
|
"--output-len", type=int, nargs="+", default=BenchArgs.output_len
|
|
)
|
|
parser.add_argument(
|
|
"--result-filename", type=str, default=BenchArgs.result_filename
|
|
)
|
|
parser.add_argument("--base-url", type=str, default=BenchArgs.base_url)
|
|
parser.add_argument("--skip-warmup", action="store_true")
|
|
|
|
@classmethod
|
|
def from_cli_args(cls, args: argparse.Namespace):
|
|
# use the default value's type to cast the args into correct types.
|
|
attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)]
|
|
return cls(
|
|
**{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs}
|
|
)
|
|
|
|
|
|
def launch_server_internal(server_args):
|
|
try:
|
|
launch_server(server_args)
|
|
except Exception as e:
|
|
raise e
|
|
finally:
|
|
kill_process_tree(os.getpid(), include_parent=False)
|
|
|
|
|
|
def launch_server_process(server_args: ServerArgs):
|
|
proc = multiprocessing.Process(target=launch_server_internal, args=(server_args,))
|
|
proc.start()
|
|
base_url = f"http://{server_args.host}:{server_args.port}"
|
|
timeout = 600
|
|
|
|
start_time = time.time()
|
|
while time.time() - start_time < timeout:
|
|
try:
|
|
headers = {
|
|
"Content-Type": "application/json; charset=utf-8",
|
|
}
|
|
response = requests.get(f"{base_url}/v1/models", headers=headers)
|
|
if response.status_code == 200:
|
|
return proc, base_url
|
|
except requests.RequestException:
|
|
pass
|
|
time.sleep(10)
|
|
raise TimeoutError("Server failed to start within the timeout period.")
|
|
|
|
|
|
def run_one_case(
|
|
url: str,
|
|
batch_size: int,
|
|
input_len: int,
|
|
output_len: int,
|
|
run_name: str,
|
|
result_filename: str,
|
|
):
|
|
input_ids = [
|
|
[int(x) for x in np.random.randint(0, high=16384, size=(input_len,))]
|
|
for _ in range(batch_size)
|
|
]
|
|
|
|
tic = time.time()
|
|
response = requests.post(
|
|
url + "/generate",
|
|
json={
|
|
"input_ids": input_ids,
|
|
"sampling_params": {
|
|
"temperature": 0,
|
|
"max_new_tokens": output_len,
|
|
"ignore_eos": True,
|
|
},
|
|
},
|
|
)
|
|
latency = time.time() - tic
|
|
|
|
_ = response.json()
|
|
output_throughput = batch_size * output_len / latency
|
|
overall_throughput = batch_size * (input_len + output_len) / latency
|
|
|
|
print(f"batch size: {batch_size}")
|
|
print(f"latency: {latency:.2f} s")
|
|
print(f"output throughput: {output_throughput:.2f} token/s")
|
|
print(f"(input + output) throughput: {overall_throughput:.2f} token/s")
|
|
|
|
if result_filename:
|
|
with open(result_filename, "a") as fout:
|
|
res = {
|
|
"run_name": run_name,
|
|
"batch_size": batch_size,
|
|
"input_len": input_len,
|
|
"output_len": output_len,
|
|
"latency": round(latency, 4),
|
|
"output_throughput": round(output_throughput, 2),
|
|
"overall_throughput": round(overall_throughput, 2),
|
|
}
|
|
fout.write(json.dumps(res) + "\n")
|
|
|
|
|
|
def run_benchmark(server_args: ServerArgs, bench_args: BenchArgs):
|
|
if bench_args.base_url:
|
|
proc, base_url = None, bench_args.base_url
|
|
else:
|
|
proc, base_url = launch_server_process(server_args)
|
|
|
|
# warmup
|
|
if not bench_args.skip_warmup:
|
|
run_one_case(
|
|
base_url,
|
|
batch_size=16,
|
|
input_len=1024,
|
|
output_len=16,
|
|
run_name="",
|
|
result_filename="",
|
|
)
|
|
|
|
# benchmark
|
|
try:
|
|
for bs, il, ol in itertools.product(
|
|
bench_args.batch_size, bench_args.input_len, bench_args.output_len
|
|
):
|
|
run_one_case(
|
|
base_url,
|
|
bs,
|
|
il,
|
|
ol,
|
|
bench_args.run_name,
|
|
bench_args.result_filename,
|
|
)
|
|
finally:
|
|
if proc:
|
|
kill_process_tree(proc.pid)
|
|
|
|
print(f"\nResults are saved to {bench_args.result_filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
ServerArgs.add_cli_args(parser)
|
|
BenchArgs.add_cli_args(parser)
|
|
args = parser.parse_args()
|
|
server_args = ServerArgs.from_cli_args(args)
|
|
bench_args = BenchArgs.from_cli_args(args)
|
|
|
|
run_benchmark(server_args, bench_args)
|