sglang0.4.5.post1/python/sglang/bench_serving.py

1580 lines
55 KiB
Python

# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py
"""
Benchmark online serving with dynamic requests.
Usage:
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
"""
import argparse
import asyncio
import json
import os
import pickle
import random
import resource
import sys
import time
import traceback
import warnings
from argparse import ArgumentParser
from dataclasses import dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
AutoTokenizer,
PreTrainedTokenizer,
PreTrainedTokenizerBase,
PreTrainedTokenizerFast,
)
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
ASSISTANT_SUFFIX = "Assistant:"
global args
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
lora_name: str
extra_request_body: Dict[str, Any]
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0.0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(default_factory=list) # List of inter-token latencies
prompt_len: int = 0
error: str = ""
output_len: int = 0
def remove_prefix(text: str, prefix: str) -> str:
return text[len(prefix) :] if text.startswith(prefix) else text
def remove_suffix(text: str, suffix: str) -> str:
return text[: -len(suffix)] if text.endswith(suffix) else text
def get_auth_headers() -> Dict[str, str]:
api_key = os.environ.get("OPENAI_API_KEY")
if api_key:
return {"Authorization": f"Bearer {api_key}"}
else:
return {}
# trt llm does not support ignore_eos
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.000001,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
"min_length": request_func_input.output_len,
"end_id": 1048576,
**request_func_input.extra_request_body,
}
if args.disable_ignore_eos:
del payload["min_length"]
del payload["end_id"]
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
output.output_len = request_func_input.output_len
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
# set ignore_eos True by default
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"completions"
), "OpenAI Completions API URL must end with 'completions'."
prompt = request_func_input.prompt
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": request_func_input.model,
"prompt": prompt,
"temperature": 0.0,
"best_of": 1,
"max_tokens": request_func_input.output_len,
"stream": not args.disable_stream,
"ignore_eos": not args.disable_ignore_eos,
**request_func_input.extra_request_body,
}
headers = get_auth_headers()
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
output_len = request_func_input.output_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
latency = time.perf_counter() - st
if chunk == "[DONE]":
pass
else:
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["text"]
output_len = (data.get("usage") or {}).get(
"completion_tokens", output_len
)
output.generated_text = generated_text
output.success = True
output.latency = latency
output.output_len = output_len
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_truss(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
prompt = request_func_input.prompt
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": request_func_input.model,
"prompt": prompt,
"temperature": 0.0,
"best_of": 1,
"max_tokens": request_func_input.output_len,
"stream": not args.disable_stream,
"ignore_eos": not args.disable_ignore_eos,
**request_func_input.extra_request_body,
}
headers = get_auth_headers()
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
latency = time.perf_counter() - st
if chunk == "[DONE]":
pass
else:
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data["choices"][0]["delta"]["content"]:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["delta"]["content"]
output.generated_text = generated_text
output.success = True
output.latency = latency
output.output_len = request_func_input.output_len
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_sglang_generate(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
prompt = request_func_input.prompt
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"text": prompt,
"sampling_params": {
"temperature": 0.0,
"max_new_tokens": request_func_input.output_len,
"ignore_eos": not args.disable_ignore_eos,
},
"stream": not args.disable_stream,
"lora_path": request_func_input.lora_name,
"return_logprob": args.return_logprob,
"logprob_start_len": -1,
**request_func_input.extra_request_body,
}
headers = get_auth_headers()
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
output_len = request_func_input.output_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
last_output_len = 0
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
# print(chunk_bytes)
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
latency = time.perf_counter() - st
if chunk == "[DONE]":
pass
else:
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data["text"]:
timestamp = time.perf_counter()
generated_text = data["text"]
output_len = data["meta_info"]["completion_tokens"]
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
num_new_tokens = output_len - last_output_len
if num_new_tokens == 0:
continue
adjust_itl = (
timestamp - most_recent_timestamp
) / num_new_tokens
output.itl.extend([adjust_itl] * num_new_tokens)
most_recent_timestamp = timestamp
last_output_len = output_len
output.generated_text = generated_text
output.success = True
output.latency = latency
output.output_len = output_len
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
print(f"{output.error=}")
if pbar:
pbar.update(1)
return output
async def async_request_gserver(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
raise NotImplementedError()
async def async_request_profile(api_url: str) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
output = RequestFuncOutput()
try:
async with session.post(url=api_url) as response:
if response.status == 200:
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
return output
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv("SGLANG_USE_MODELSCOPE", "false").lower() == "true":
import huggingface_hub.constants
from modelscope import snapshot_download
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
)
return model_path
return pretrained_model_name_or_path
def get_tokenizer(
pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path.endswith(
".json"
) or pretrained_model_name_or_path.endswith(".model"):
from sglang.srt.hf_transformers_utils import get_tokenizer
return get_tokenizer(pretrained_model_name_or_path)
if pretrained_model_name_or_path is not None and not os.path.exists(
pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True
)
def get_dataset(args, tokenizer):
if args.dataset_name == "sharegpt":
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
context_len=args.sharegpt_context_len,
prompt_suffix=args.prompt_suffix,
apply_chat_template=args.apply_chat_template,
)
elif args.dataset_name == "random":
input_requests = sample_random_requests(
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
dataset_path=args.dataset_path,
)
elif args.dataset_name == "generated-shared-prefix":
input_requests = sample_generated_shared_prefix_requests(
num_groups=args.gsp_num_groups,
prompts_per_group=args.gsp_prompts_per_group,
system_prompt_len=args.gsp_system_prompt_len,
question_len=args.gsp_question_len,
output_len=args.gsp_output_len,
tokenizer=tokenizer,
args=args,
)
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
return input_requests
ASYNC_REQUEST_FUNCS = {
"sglang": async_request_sglang_generate,
"sglang-native": async_request_sglang_generate,
"sglang-oai": async_request_openai_completions,
"vllm": async_request_openai_completions,
"lmdeploy": async_request_openai_completions,
"trt": async_request_trt_llm,
"gserver": async_request_gserver,
"truss": async_request_truss,
}
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
total_output_retokenized: int
request_throughput: float
input_throughput: float
output_throughput: float
output_throughput_retokenized: float
total_throughput: float
total_throughput_retokenized: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
p99_tpot_ms: float
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
p95_itl_ms: float
p99_itl_ms: float
max_itl_ms: float
mean_e2e_latency_ms: float
median_e2e_latency_ms: float
std_e2e_latency_ms: float
p99_e2e_latency_ms: float
concurrency: float
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
def download_and_cache_file(url: str, filename: Optional[str] = None):
"""Read and cache a file from a url."""
if filename is None:
filename = os.path.join("/tmp", url.split("/")[-1])
# Check if the cache file already exists
if os.path.exists(filename):
return filename
print(f"Downloading from {url} to {filename}")
# Stream the response to show the progress bar
response = requests.get(url, stream=True)
response.raise_for_status() # Check for request errors
# Total size of the file in bytes
total_size = int(response.headers.get("content-length", 0))
chunk_size = 1024 # Download in chunks of 1KB
# Use tqdm to display the progress bar
with open(filename, "wb") as f, tqdm(
desc=filename,
total=total_size,
unit="B",
unit_scale=True,
unit_divisor=1024,
) as bar:
for chunk in response.iter_content(chunk_size=chunk_size):
f.write(chunk)
bar.update(len(chunk))
return filename
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
context_len: Optional[int] = None,
prompt_suffix: Optional[str] = "",
apply_chat_template=False,
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Download sharegpt if necessary
if not os.path.isfile(dataset_path) and dataset_path == "":
dataset_path = download_and_cache_file(SHAREGPT_URL)
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data
for data in dataset
if len(data.get("conversations", data.get("conversation", []))) >= 2
]
# Only keep the first two turns of each conversation.
dataset = [
(
data.get("conversations", data.get("conversation", []))[0]["value"],
data.get("conversations", data.get("conversation", []))[1]["value"],
)
for data in dataset
]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
if prompt_suffix:
prompt = (
remove_suffix(prompt, ASSISTANT_SUFFIX)
+ prompt_suffix
+ ASSISTANT_SUFFIX
)
if apply_chat_template:
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt = prompt.replace(tokenizer.bos_token, "")
prompt_token_ids = tokenizer.encode(prompt)
completion = dataset[i][1]
completion_token_ids = tokenizer.encode(completion)
prompt_len = len(prompt_token_ids)
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
if prompt_len < 2 or output_len < 2:
# Prune too short sequences.
continue
if context_len and prompt_len + output_len > context_len:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
print(f"#Input tokens: {np.sum([x[1] for x in filtered_dataset])}")
print(f"#Output tokens: {np.sum([x[2] for x in filtered_dataset])}")
return filtered_dataset
def sample_random_requests(
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
dataset_path: str,
) -> List[Tuple[str, int, int]]:
input_lens = np.random.randint(
max(int(input_len * range_ratio), 1),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
)
if True:
# Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens
# Download sharegpt if necessary
if not os.path.isfile(dataset_path):
dataset_path = download_and_cache_file(SHAREGPT_URL)
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data
for data in dataset
if len(data.get("conversations", data.get("conversation", []))) >= 2
]
# Only keep the first two turns of each conversation.
dataset = [
(
data.get("conversations", data.get("conversation", []))[0]["value"],
data.get("conversations", data.get("conversation", []))[1]["value"],
)
for data in dataset
]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
input_requests: List[Tuple[str, int, int]] = []
for data in dataset:
i = len(input_requests)
if i == num_prompts:
break
# Tokenize the prompts and completions.
prompt = data[0]
prompt_token_ids = tokenizer.encode(prompt)
prompt_len = len(prompt_token_ids)
# Skip empty prompt
if prompt_len == 0:
continue
if prompt_len > input_lens[i]:
input_ids = prompt_token_ids[: input_lens[i]]
else:
ratio = (input_lens[i] + prompt_len - 1) // prompt_len
input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
prompt = tokenizer.decode(input_ids)
input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
else:
# Sample token ids from random integers. This can cause some NaN issues.
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode(
[
(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])
]
)
input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
print(f"#Input tokens: {np.sum(input_lens)}")
print(f"#Output tokens: {np.sum(output_lens)}")
return input_requests
def gen_prompt(tokenizer, token_num):
"""Generate a random prompt of specified token length using tokenizer vocabulary."""
all_available_tokens = list(tokenizer.get_vocab().values())
selected_tokens = random.choices(all_available_tokens, k=token_num)
return tokenizer.decode(selected_tokens)
def get_gen_prefix_cache_path(args, tokenizer):
"""Create cache directory under ~/.cache/sglang/benchmark"""
cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"
# Create a unique cache filename based on the generation parameters
cache_key = (
f"gen_shared_prefix_{args.gsp_num_groups}_{args.gsp_prompts_per_group}_"
f"{args.gsp_system_prompt_len}_{args.gsp_question_len}_{args.gsp_output_len}_"
f"{tokenizer.__class__.__name__}.pkl"
)
return cache_dir / cache_key
def sample_generated_shared_prefix_requests(
num_groups: int,
prompts_per_group: int,
system_prompt_len: int,
question_len: int,
output_len: int,
tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace,
) -> List[Tuple[str, int, int]]:
"""Generate benchmark requests with shared system prompts using random tokens and caching."""
cache_path = get_gen_prefix_cache_path(args, tokenizer)
# Try to load from cache first
if cache_path.exists():
print(f"\nLoading cached generated input data from {cache_path}")
with open(cache_path, "rb") as f:
return pickle.load(f)
print("\nGenerating new input data...")
# Generate system prompts for each group
system_prompts = []
for _ in range(num_groups):
system_prompt = gen_prompt(tokenizer, system_prompt_len)
system_prompts.append(system_prompt)
# Generate questions
questions = []
for _ in range(num_groups * prompts_per_group):
question = gen_prompt(tokenizer, question_len)
questions.append(question)
# Combine system prompts with questions
input_requests = []
total_input_tokens = 0
total_output_tokens = 0
for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
system_prompt = system_prompts[group_idx]
for prompt_idx in tqdm(
range(prompts_per_group), desc="Generating questions", leave=False
):
question = questions[group_idx * prompts_per_group + prompt_idx]
full_prompt = f"{system_prompt}\n\n{question}"
prompt_len = len(tokenizer.encode(full_prompt))
input_requests.append((full_prompt, prompt_len, output_len))
total_input_tokens += prompt_len
total_output_tokens += output_len
# Shuffle questions
random.shuffle(input_requests)
# Print statistics
print(f"\nGenerated shared prefix dataset statistics:")
print(f"Number of groups: {num_groups}")
print(f"Prompts per group: {prompts_per_group}")
print(f"Total prompts: {len(input_requests)}")
print(f"Total input tokens: {total_input_tokens}")
print(f"Total output tokens: {total_output_tokens}")
print(
f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
)
print(
f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
)
# Save to cache
cache_path.parent.mkdir(parents=True, exist_ok=True)
print(f"Caching generated input data to {cache_path}")
with open(cache_path, "wb") as f:
pickle.dump(input_requests, f)
return input_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
backend: str,
) -> Tuple[BenchmarkMetrics, List[int]]:
output_lens: List[int] = []
retokenized_output_lens: List[int] = []
total_input = 0
completed = 0
itls: List[float] = []
tpots: List[float] = []
ttfts: List[float] = []
e2e_latencies: List[float] = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = outputs[i].output_len
output_lens.append(output_len)
retokenized_output_len = len(
tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
)
retokenized_output_lens.append(retokenized_output_len)
total_input += input_requests[i][1]
if output_len > 1:
tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2e_latencies.append(outputs[i].latency)
completed += 1
else:
output_lens.append(0)
retokenized_output_lens.append(0)
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2,
)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(output_lens),
total_output_retokenized=sum(retokenized_output_lens),
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=sum(output_lens) / dur_s,
output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
total_throughput=(total_input + sum(output_lens)) / dur_s,
total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
/ dur_s,
mean_ttft_ms=np.mean(ttfts or 0)
* 1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
std_ttft_ms=np.std(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
mean_itl_ms=np.mean(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
p95_itl_ms=np.percentile(itls or 0, 95) * 1000,
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
max_itl_ms=np.max(itls or 0) * 1000,
mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
std_e2e_latency_ms=np.std(e2e_latencies) * 1000,
p99_e2e_latency_ms=np.percentile(e2e_latencies, 99) * 1000,
concurrency=np.sum(e2e_latencies) / dur_s,
)
return metrics, output_lens
async def benchmark(
backend: str,
api_url: str,
base_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
request_rate: float,
max_concurrency: Optional[int],
disable_tqdm: bool,
lora_names: List[str],
extra_request_body: Dict[str, Any],
profile: bool,
pd_seperated: bool = False,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
else:
raise ValueError(f"Unknown backend: {backend}")
# Limit concurrency
# From https://github.com/vllm-project/vllm/pull/9390
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input, pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input, pbar=pbar)
# Warmup
print("Starting initial single prompt test run...")
test_prompt, test_prompt_len, test_output_len = input_requests[0]
if lora_names != None and len(lora_names) != 0:
lora_name = lora_names[0]
else:
lora_name = None
test_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=api_url,
prompt_len=test_prompt_len,
output_len=min(test_output_len, 32),
lora_name=lora_name,
extra_request_body=extra_request_body,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}"
)
else:
print("Initial test run completed. Starting main benchmark run...")
# Flush cache
if "sglang" in backend:
requests.post(base_url + "/flush_cache", headers=get_auth_headers())
time.sleep(1.0)
# Start profiler
if profile:
print("Starting profiler...")
profile_output = await async_request_profile(
api_url=base_url + "/start_profile"
)
if profile_output.success:
print("Profiler started")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
# Run all requests
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
if lora_names != None and len(lora_names) != 0:
idx = random.randint(0, len(lora_names) - 1)
lora_name = lora_names[idx]
else:
lora_name = None
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
lora_name=lora_name,
extra_request_body=extra_request_body,
)
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input, pbar=pbar)
)
)
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
# Stop profiler
if profile:
print("Stopping profiler...")
profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
if "sglang" in backend:
server_info = requests.get(base_url + "/get_server_info")
if pd_seperated:
accept_length = server_info.json()["decode"][0].get(
"avg_spec_accept_length", None
)
else:
accept_length = server_info.json().get("avg_spec_accept_length", None)
else:
accept_length = None
# Compute metrics and print results
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics, output_lens = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
backend=backend,
)
print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Backend:", backend))
print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
print(
"{:<40} {:<10}".format(
"Max reqeuest concurrency:",
max_concurrency if max_concurrency else "not set",
)
)
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
print(
"{:<40} {:<10}".format(
"Total generated tokens (retokenized):", metrics.total_output_retokenized
)
)
print(
"{:<40} {:<10.2f}".format(
"Request throughput (req/s):", metrics.request_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Input token throughput (tok/s):", metrics.input_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Output token throughput (tok/s):", metrics.output_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Total token throughput (tok/s):", metrics.total_throughput
)
)
print("{:<40} {:<10.2f}".format("Concurrency:", metrics.concurrency))
if accept_length:
print("{:<40} {:<10.2f}".format("Accept length:", accept_length))
print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
print(
"{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
)
print(
"{:<40} {:<10.2f}".format(
"Median E2E Latency (ms):", metrics.median_e2e_latency_ms
)
)
print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
print("{s:{c}^{n}}".format(s="Inter-Token Latency", n=50, c="-"))
print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
print("{:<40} {:<10.2f}".format("P95 ITL (ms):", metrics.p95_itl_ms))
print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
print("{:<40} {:<10.2f}".format("Max ITL (ms):", metrics.max_itl_ms))
print("=" * 50)
if (
metrics.median_ttft_ms is not None
and metrics.mean_itl_ms is not None
and metrics.output_throughput is not None
):
result = {
# Arguments
"backend": args.backend,
"dataset_name": args.dataset_name,
"request_rate": request_rate,
"max_concurrency": max_concurrency,
"sharegpt_output_len": args.sharegpt_output_len,
"random_input_len": args.random_input_len,
"random_output_len": args.random_output_len,
"random_range_ratio": args.random_range_ratio,
# Results
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"total_output_tokens_retokenized": metrics.total_output_retokenized,
"request_throughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
"median_e2e_latency_ms": metrics.median_e2e_latency_ms,
"std_e2e_latency_ms": metrics.std_e2e_latency_ms,
"p99_e2e_latency_ms": metrics.p99_e2e_latency_ms,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"std_ttft_ms": metrics.std_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"std_tpot_ms": metrics.std_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"mean_itl_ms": metrics.mean_itl_ms,
"median_itl_ms": metrics.median_itl_ms,
"std_itl_ms": metrics.std_itl_ms,
"p95_itl_ms": metrics.p95_itl_ms,
"p99_itl_ms": metrics.p99_itl_ms,
"concurrency": metrics.concurrency,
"accept_length": accept_length,
}
else:
print(f"Error running benchmark for request rate: {request_rate}")
print("-" * 30)
# Determine output file name
if args.output_file:
output_file_name = args.output_file
else:
now = datetime.now().strftime("%m%d")
if args.dataset_name == "random":
output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
else:
output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"
# Append results to a JSONL file
with open(output_file_name, "a") as file:
file.write(json.dumps(result) + "\n")
result.update(
{
"input_lens": [output.prompt_len for output in outputs],
"output_lens": output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"generated_texts": [output.generated_text for output in outputs],
"errors": [output.error for output in outputs],
}
)
return result
def check_chat_template(model_path):
try:
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
return "chat_template" in tokenizer.init_kwargs
except Exception as e:
print(f"Fail to load tokenizer config with error={e}")
return False
def set_global_args(args_: argparse.Namespace):
"""Set the global args."""
global args
args = args_
def run_benchmark(args_: argparse.Namespace):
global args
args = args_
# Set default value for max_concurrency if not present
if not hasattr(args, "max_concurrency"):
args.max_concurrency = None
print(f"benchmark_args={args}")
# Set global environments
set_ulimit()
random.seed(args.seed)
np.random.seed(args.seed)
extra_request_body = {}
if args.extra_request_body:
extra_request_body = json.loads(args.extra_request_body)
# Set url
if args.port is None:
args.port = {
"sglang": 30000,
"sglang-native": 30000,
"sglang-oai": 30000,
"lmdeploy": 23333,
"vllm": 8000,
"trt": 8000,
"gserver": 9988,
"truss": 8080,
}.get(args.backend, 30000)
model_url = (
f"{args.base_url}/v1/models"
if args.base_url
else f"http://{args.host}:{args.port}/v1/models"
)
if args.backend in ["sglang", "sglang-native"]:
api_url = (
f"{args.base_url}/generate"
if args.base_url
else f"http://{args.host}:{args.port}/generate"
)
elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
api_url = (
f"{args.base_url}/v1/completions"
if args.base_url
else f"http://{args.host}:{args.port}/v1/completions"
)
elif args.backend == "trt":
api_url = (
f"{args.base_url}/v2/models/ensemble/generate_stream"
if args.base_url
else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
)
if args.model is None:
print("Please provide a model using `--model` when using `trt` backend.")
sys.exit(1)
elif args.backend == "gserver":
api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
args.model = args.model or "default"
elif args.backend == "truss":
api_url = (
f"{args.base_url}/v1/models/model:predict"
if args.base_url
else f"http://{args.host}:{args.port}/v1/models/model:predict"
)
base_url = (
f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
)
# Get model name
if args.model is None:
if args.backend == "truss":
print(
"Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
)
sys.exit(1)
try:
response = requests.get(model_url, headers=get_auth_headers())
model_list = response.json().get("data", [])
args.model = model_list[0]["id"] if model_list else None
except Exception as e:
print(f"Failed to fetch model from {model_url}. Error: {e}")
print(
"Please specify the correct host and port using `--host` and `--port`."
)
sys.exit(1)
if args.model is None:
print("No model specified or found. Please provide a model using `--model`.")
sys.exit(1)
if not check_chat_template(args.model):
print(
"\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
"Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
)
print(f"{args}\n")
# Read dataset
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
tokenizer = get_tokenizer(tokenizer_id)
input_requests = get_dataset(args, tokenizer)
return asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
base_url=base_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=args.request_rate,
max_concurrency=args.max_concurrency,
disable_tqdm=args.disable_tqdm,
lora_names=args.lora_name,
extra_request_body=extra_request_body,
profile=args.profile,
pd_seperated=args.pd_seperated,
)
)
def set_ulimit(target_soft_limit=65535):
resource_type = resource.RLIMIT_NOFILE
current_soft, current_hard = resource.getrlimit(resource_type)
if current_soft < target_soft_limit:
try:
resource.setrlimit(resource_type, (target_soft_limit, current_hard))
except ValueError as e:
print(f"Fail to set RLIMIT_NOFILE: {e}")
class LoRAPathAction(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, [])
for lora_name in values:
getattr(namespace, self.dest).append(lora_name)
if __name__ == "__main__":
parser = ArgumentParser(description="Benchmark the online serving throughput.")
parser.add_argument(
"--backend",
type=str,
choices=list(ASYNC_REQUEST_FUNCS.keys()),
default="sglang",
help="Must specify a backend, depending on the LLM Inference Engine.",
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument(
"--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
)
parser.add_argument(
"--port",
type=int,
help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
)
parser.add_argument(
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "random", "generated-shared-prefix"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument(
"--dataset-path", type=str, default="", help="Path to the dataset."
)
parser.add_argument(
"--model",
type=str,
help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
)
parser.add_argument(
"--tokenizer",
type=str,
help="Name or path of the tokenizer. If not set, using the model conf.",
)
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process. Default is 1000.",
)
parser.add_argument(
"--sharegpt-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
)
parser.add_argument(
"--sharegpt-context-len",
type=int,
default=None,
help="The context length of the model for the ShareGPT dataset. Requests longer than the context length will be dropped.",
)
parser.add_argument(
"--random-input-len",
type=int,
default=1024,
help="Number of input tokens per request, used only for random dataset.",
)
parser.add_argument(
"--random-output-len",
default=1024,
type=int,
help="Number of output tokens per request, used only for random dataset.",
)
parser.add_argument(
"--random-range-ratio",
type=float,
default=0.0,
help="Range of sampled ratio of input/output length, "
"used only for random dataset.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
)
parser.add_argument(
"--max-concurrency",
type=int,
default=None,
help="Maximum number of concurrent requests. This can be used "
"to help simulate an environment where a higher level component "
"is enforcing a maximum number of concurrent requests. While the "
"--request-rate argument controls the rate at which requests are "
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.",
)
parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--disable-stream",
action="store_true",
help="Disable streaming mode.",
)
parser.add_argument(
"--return-logprob",
action="store_true",
help="Return logprob.",
)
parser.add_argument("--seed", type=int, default=1, help="The random seed.")
parser.add_argument(
"--disable-ignore-eos",
action="store_true",
help="Disable ignoring EOS.",
)
parser.add_argument(
"--extra-request-body",
metavar='{"key1": "value1", "key2": "value2"}',
type=str,
help="Append given JSON object to the request payload. You can use this to specify"
"additional generate params like sampling params.",
)
parser.add_argument(
"--apply-chat-template",
action="store_true",
help="Apply chat template",
)
parser.add_argument(
"--profile",
action="store_true",
help="Use Torch Profiler. The endpoint must be launched with "
"SGLANG_TORCH_PROFILER_DIR to enable profiler.",
)
parser.add_argument(
"--lora-name",
type=str,
nargs="*",
default=None,
action=LoRAPathAction,
help="The names of LoRA adapters. You can provide a list of names in the format {name} {name} {name}...",
)
parser.add_argument(
"--prompt-suffix",
type=str,
default="",
help="Suffix applied to the end of all user prompts, followed by assistant prompt suffix.",
)
parser.add_argument(
"--pd-seperated",
action="store_true",
help="Benchmark PD disaggregation server",
)
group = parser.add_argument_group("generated-shared-prefix dataset arguments")
group.add_argument(
"--gsp-num-groups",
type=int,
default=64,
help="Number of system prompt groups for generated-shared-prefix dataset",
)
group.add_argument(
"--gsp-prompts-per-group",
type=int,
default=16,
help="Number of prompts per system prompt group for generated-shared-prefix dataset",
)
group.add_argument(
"--gsp-system-prompt-len",
type=int,
default=2048,
help="Target length in tokens for system prompts in generated-shared-prefix dataset",
)
group.add_argument(
"--gsp-question-len",
type=int,
default=128,
help="Target length in tokens for questions in generated-shared-prefix dataset",
)
group.add_argument(
"--gsp-output-len",
type=int,
default=256,
help="Target length in tokens for outputs in generated-shared-prefix dataset",
)
args = parser.parse_args()
run_benchmark(args)