sglang0.4.5.post1/python/sglang/srt/configs/chatglm.py

79 lines
2.8 KiB
Python

# Adapted from
# https://github.com/THUDM/ChatGLM2-6B
# https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/configs/chatglm.py
# ChatGLM2 and ChatGLM3 share the same config.
# ChatGLM4 is officially supported by Huggingface
# transformers >= 4.46.0 is required
# https://huggingface.co/docs/transformers/en/model_doc/glm
from transformers import PretrainedConfig
class ChatGLMConfig(PretrainedConfig):
model_type = "chatglm"
attribute_map = {
"num_hidden_layers": "num_layers",
"n_head_kv": "multi_query_group_num",
}
def __init__(
self,
num_layers=28,
padded_vocab_size=65024,
hidden_size=4096,
ffn_hidden_size=13696,
kv_channels=128,
num_attention_heads=32,
seq_length=2048,
hidden_dropout=0.0,
attention_dropout=0.0,
layernorm_epsilon=1e-5,
rmsnorm=True,
apply_residual_connection_post_layernorm=False,
post_layer_norm=True,
add_bias_linear=False,
add_qkv_bias=False,
interleaved_qkv=False,
bias_dropout_fusion=True,
multi_query_attention=False,
multi_query_group_num=1,
apply_query_key_layer_scaling=True,
attention_softmax_in_fp32=True,
fp32_residual_connection=False,
quantization_bit=0,
pre_seq_len=None,
prefix_projection=False,
**kwargs
):
self.num_layers = num_layers
self.vocab_size = padded_vocab_size
self.padded_vocab_size = padded_vocab_size
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.kv_channels = kv_channels
self.num_attention_heads = num_attention_heads
self.seq_length = seq_length
# It is to be compatible with long lora.
self.max_position_embeddings = seq_length
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.layernorm_epsilon = layernorm_epsilon
self.rmsnorm = rmsnorm
self.apply_residual_connection_post_layernorm = (
apply_residual_connection_post_layernorm
)
self.post_layer_norm = post_layer_norm
self.add_bias_linear = add_bias_linear
self.add_qkv_bias = add_qkv_bias
self.bias_dropout_fusion = bias_dropout_fusion
self.multi_query_attention = multi_query_attention
self.multi_query_group_num = multi_query_group_num
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
self.fp32_residual_connection = fp32_residual_connection
self.quantization_bit = quantization_bit
self.pre_seq_len = pre_seq_len
self.prefix_projection = prefix_projection
self.interleaved_qkv = interleaved_qkv
super().__init__(**kwargs)