sglang0.4.5.post1/python/sglang/srt/disaggregation/prefill.py

250 lines
8.8 KiB
Python

"""
Life cycle of a request in the prefill server
1. Bootstrap Queue
a. Initialize a sender for each request
b. Use the queue to store requests whose bootstrap (handshake and preallocation) has not finished
c. Poll senders to check bootstrap state
d. Once bootstrap is complete, move request to Waiting Queue
2. Waiting Queue
a. Use PrefillAdder to pop requests
b. Run forward
c. Add the request to Infight Queue
3. Infight Queue
a. Poll (non-blocking) the sender of the request
b. Once the transfer has finished, return the request
"""
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, List, Optional
import torch
from sglang.srt.disaggregation.conn import KVArgs, KVManager, KVPoll, KVSender
from sglang.srt.disaggregation.utils import (
ReqToMetadataIdxAllocator,
poll_and_all_reduce,
)
from sglang.srt.managers.schedule_batch import FINISH_LENGTH, Req, ScheduleBatch
if TYPE_CHECKING:
from torch.distributed import ProcessGroup
from sglang.srt.managers.scheduler import GenerationBatchResult, Scheduler
from sglang.srt.mem_cache.memory_pool import KVCache
logger = logging.getLogger(__name__)
class PrefillBootstrapQueue:
"""
Store the requests in bootstrapping
"""
def __init__(
self,
token_to_kv_pool: KVCache,
req_to_metadata_buffer_idx_allocator: ReqToMetadataIdxAllocator,
metadata_buffers: List[torch.Tensor],
aux_dtype: torch.dtype,
tp_rank: int,
tp_size: int,
bootstrap_port: int,
gloo_group: ProcessGroup,
):
self.token_to_kv_pool = token_to_kv_pool
self.aux_dtype = aux_dtype
self.metadata_buffers = metadata_buffers
self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
self.tp_rank = tp_rank
self.tp_size = tp_size
self.kv_manager = self._init_kv_manager()
self.queue: List[Req] = []
self.gloo_group = gloo_group
self.bootstrap_port = bootstrap_port
def allocate_token_id(self, idx: int, token_id: int):
assert token_id >= 0, f"token_id: {token_id} is negative"
output_id_buffer = self.metadata_buffers[0]
output_id_buffer[idx] = token_id
def _init_kv_manager(self) -> KVManager:
kv_args = KVArgs()
kv_args.engine_rank = self.tp_rank
kv_data_ptrs, kv_data_lens, kv_item_lens = (
self.token_to_kv_pool.get_contiguous_buf_infos()
)
kv_args.kv_data_ptrs = kv_data_ptrs
kv_args.kv_data_lens = kv_data_lens
kv_args.kv_item_lens = kv_item_lens
# Define req -> input ids buffer
kv_args.aux_data_ptrs = [
metadata_buffer.data_ptr() for metadata_buffer in self.metadata_buffers
]
kv_args.aux_data_lens = [
metadata_buffer.nbytes for metadata_buffer in self.metadata_buffers
]
kv_args.aux_item_lens = [
metadata_buffer[0].nbytes for metadata_buffer in self.metadata_buffers
]
kv_args.ib_device = "mock-ib-device"
kv_manager = KVManager(kv_args)
return kv_manager
def add(self, req: Req) -> None:
req.disagg_kv_sender = KVSender(
mgr=self.kv_manager,
bootstrap_addr=f"{req.bootstrap_host}:{self.bootstrap_port}",
bootstrap_room=req.bootstrap_room,
)
self._process_req(req)
self.queue.append(req)
def _process_req(self, req: Req) -> None:
"""
Set max_new_tokens = 1, so PrefillAdder memory estimation is accurate
"""
req.sampling_params.max_new_tokens = 1
def pop_bootstrapped(self) -> List[Req]:
"""pop the reqs which has finished bootstrapping"""
bootstrapped_reqs = []
indices_to_remove = set()
if len(self.queue) == 0:
return []
polls = poll_and_all_reduce(
[req.disagg_kv_sender for req in self.queue], self.gloo_group
)
for i, (req, poll) in enumerate(zip(self.queue, polls)):
if poll == KVPoll.Bootstrapping:
continue
elif poll == KVPoll.Failed:
raise Exception("Bootstrap failed")
# KV.WaitingForInput - init here
num_kv_indices = len(req.origin_input_ids)
if self.req_to_metadata_buffer_idx_allocator.available_size() == 0:
break
req.metadata_buffer_index = (
self.req_to_metadata_buffer_idx_allocator.alloc()
)
assert req.metadata_buffer_index is not None
req.disagg_kv_sender.init(num_kv_indices, req.metadata_buffer_index)
bootstrapped_reqs.append(req)
indices_to_remove.add(i)
self.queue = [
entry for i, entry in enumerate(self.queue) if i not in indices_to_remove
]
return bootstrapped_reqs
class SchedulerDisaggregationPrefillMixin:
"""
Mixin for Scheduler to handle disaggregation prefill
"""
def process_batch_result_disagg_prefill(
self: Scheduler, batch: ScheduleBatch, result: GenerationBatchResult
) -> None:
"""
Transfer kv for prefill completed requests and add it into disagg_prefill_infight_queue
Adapted from process_batch_result_prefill
"""
next_token_ids = result.next_token_ids.tolist()
for req, next_token_id in zip(batch.reqs, next_token_ids, strict=True):
req: Req
if req.is_chunked <= 0:
# There is no output_ids for prefill
req.output_ids.append(next_token_id)
self.tree_cache.cache_unfinished_req(req) # update the tree and lock
self.send_kv_chunk(req, token_id=next_token_id)
self.disagg_prefill_infight_queue.append(req)
else:
# being chunked reqs' prefill is not finished
req.is_chunked -= 1
# TODO: Not sure if this is necessary
if batch.next_batch_sampling_info:
batch.next_batch_sampling_info.update_regex_vocab_mask()
# We need to remove this for overlap schedule.
self.current_stream.synchronize()
batch.next_batch_sampling_info.sampling_info_done.set()
def process_disagg_prefill_infight_queue(self: Scheduler) -> None:
"""
Poll the requests in the middle of transfer. If done, return the request.
"""
assert len(self.disagg_prefill_infight_queue) > 0
done_reqs = []
polls = poll_and_all_reduce(
[req.disagg_kv_sender for req in self.disagg_prefill_infight_queue],
self.tp_worker.get_tp_cpu_group(),
)
undone_reqs: List[Req] = []
# Check .poll() for the reqs in disagg_prefill_infight_queue. If Success, respond to the client and remove it from the queue
for req, poll in zip(self.disagg_prefill_infight_queue, polls):
if poll in [KVPoll.WaitingForInput, KVPoll.Transferring]:
undone_reqs.append(req)
elif poll == KVPoll.Success: # transfer done
self.tree_cache.cache_finished_req(req) # unlock the tree
req.finished_reason = FINISH_LENGTH(length=0)
done_reqs.append(req)
elif poll == KVPoll.Failed:
raise Exception("Transferring failed")
# Stream requests which have finished transfer
self.stream_output(done_reqs, False, None)
self.disagg_prefill_infight_queue = undone_reqs
def process_prefill_chunk(self: Scheduler) -> None:
if self.last_batch and self.last_batch.forward_mode.is_extend():
if self.chunked_req:
# Move the chunked request out of the batch so that we can merge
# only finished requests to running_batch.
self.last_batch.filter_batch(chunked_req_to_exclude=self.chunked_req)
self.tree_cache.cache_unfinished_req(self.chunked_req)
self.send_kv_chunk(self.chunked_req)
# chunked request keeps its rid but will get a new req_pool_idx
self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
self.running_batch.batch_is_full = False
def send_kv_chunk(
self: Scheduler, req: Req, token_id: Optional[int] = None
) -> None:
"""
Send a prefilled chunk to the decode server
"""
start_idx = req.start_send_idx
end_idx = min(len(req.fill_ids), len(req.origin_input_ids))
kv_indices = (
self.req_to_token_pool.req_to_token[req.req_pool_idx][start_idx:end_idx]
.cpu()
.numpy()
)
req.start_send_idx = end_idx
if token_id is not None:
self.disagg_prefill_pending_queue.allocate_token_id(
req.metadata_buffer_index, token_id
)
req.disagg_kv_sender.send(kv_indices)