36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/distributed/communication_op.py
|
|
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
import torch
|
|
import torch.distributed
|
|
|
|
from .parallel_state import get_tp_group
|
|
|
|
|
|
def tensor_model_parallel_all_reduce(input_: torch.Tensor) -> torch.Tensor:
|
|
"""All-reduce the input tensor across model parallel group."""
|
|
return get_tp_group().all_reduce(input_)
|
|
|
|
|
|
def tensor_model_parallel_all_gather(
|
|
input_: torch.Tensor, dim: int = -1
|
|
) -> torch.Tensor:
|
|
"""All-gather the input tensor across model parallel group."""
|
|
return get_tp_group().all_gather(input_, dim)
|
|
|
|
|
|
def tensor_model_parallel_gather(
|
|
input_: torch.Tensor, dst: int = 0, dim: int = -1
|
|
) -> Optional[torch.Tensor]:
|
|
"""Gather the input tensor across model parallel group."""
|
|
return get_tp_group().gather(input_, dst, dim)
|
|
|
|
|
|
def broadcast_tensor_dict(
|
|
tensor_dict: Optional[Dict[Any, Union[torch.Tensor, Any]]] = None, src: int = 0
|
|
):
|
|
if not torch.distributed.is_initialized():
|
|
return tensor_dict
|
|
return get_tp_group().broadcast_tensor_dict(tensor_dict, src)
|