sglang0.4.5.post1/python/sglang/srt/layers/attention/flashmla_backend.py

285 lines
10 KiB
Python

from __future__ import annotations
"""
Support attention backend for FlashMLA.
#TODO
Enable speculative sampling in FlashMLA
"""
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional, Union
import torch
import triton
from flash_mla import flash_mla_with_kvcache, get_mla_metadata
from sglang.global_config import global_config
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
from sglang.srt.layers.attention.flashinfer_mla_backend import FlashInferMLAAttnBackend
from sglang.srt.layers.attention.utils import create_flashmla_kv_indices_triton
from sglang.srt.layers.dp_attention import get_attention_tp_size
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
if TYPE_CHECKING:
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.speculative.eagle_utils import EagleDraftInput, EagleVerifyInput
from sglang.srt.speculative.spec_info import SpecInfo
# FlashMLA only supports pagesize=64
PAGE_SIZE = 64
# TODO The current setup is hard-coded and will be changed after integrating with MTP.
Q_LEN = 1
@dataclass
class FlashMLADecodeMetadata:
flashmla_metadata: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
num_splits: Optional[torch.Tensor] = None
block_kv_indices: Optional[torch.Tensor] = None
def __init__(
self,
flashmla_metadata: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
num_splits: Optional[torch.Tensor] = None,
block_kv_indices: Optional[torch.Tensor] = None,
):
self.flashmla_metadata = flashmla_metadata
self.num_splits = num_splits
self.block_kv_indices = block_kv_indices
class FlashMLABackend(FlashInferMLAAttnBackend):
"""Flashinfer attention kernels."""
def __init__(
self,
model_runner: ModelRunner,
skip_prefill: bool = False,
kv_indptr_buf: Optional[torch.Tensor] = None,
kv_last_page_len_buf: Optional[torch.Tensor] = None,
):
super().__init__(
model_runner, skip_prefill, kv_indptr_buf, kv_last_page_len_buf
)
self.num_q_heads = (
model_runner.model_config.num_attention_heads // get_attention_tp_size()
)
self.num_kv_heads = model_runner.model_config.get_num_kv_heads(
get_attention_tp_size()
)
self.req_to_token = model_runner.req_to_token_pool.req_to_token
self.num_local_heads = (
model_runner.model_config.num_attention_heads // get_attention_tp_size()
)
self.forward_metadata: Union[FlashMLADecodeMetadata] = None
self.kv_lora_rank = model_runner.model_config.kv_lora_rank
self.qk_nope_head_dim = model_runner.model_config.qk_nope_head_dim
self.qk_rope_head_dim = model_runner.model_config.qk_rope_head_dim
self.v_head_dim = model_runner.model_config.v_head_dim
self.scaling = model_runner.model_config.scaling
self.data_type = model_runner.kv_cache_dtype
self.q_data_type = model_runner.dtype
self.kv_cache_dim = self.kv_lora_rank + self.qk_rope_head_dim
def init_forward_metadata(self, forward_batch: ForwardBatch):
bs = forward_batch.batch_size
spec_info = forward_batch.spec_info
if forward_batch.forward_mode.is_decode_or_idle():
if spec_info is None:
max_seqlen_pad = triton.cdiv(
forward_batch.decode_seq_lens_cpu.max().item(), PAGE_SIZE
)
block_kv_indices = torch.full(
(bs, max_seqlen_pad),
-1,
dtype=torch.int32,
device=forward_batch.seq_lens.device,
)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
)
mla_metadata, num_splits = get_mla_metadata(
forward_batch.seq_lens.to(torch.int32),
Q_LEN * self.num_q_heads // self.num_kv_heads,
self.num_kv_heads,
)
self.forward_metadata = FlashMLADecodeMetadata(
mla_metadata,
num_splits,
block_kv_indices,
)
else:
super().init_forward_metadata(forward_batch)
else:
super().init_forward_metadata(forward_batch)
def init_cuda_graph_state(
self,
max_bs: int,
block_kv_indices: Optional[torch.Tensor] = None,
):
if block_kv_indices is None:
cuda_graph_kv_indices = torch.full(
(max_bs, (self.max_context_len + PAGE_SIZE) // PAGE_SIZE),
1,
dtype=torch.int32,
device="cuda",
)
else:
cuda_graph_kv_indices = block_kv_indices
self.cuda_graph_mla_metadata, self.cuda_graph_num_splits = get_mla_metadata(
torch.ones(max_bs, dtype=torch.int32, device=cuda_graph_kv_indices.device),
Q_LEN * self.num_q_heads // self.num_kv_heads,
self.num_kv_heads,
)
self.cuda_graph_kv_indices = cuda_graph_kv_indices
def init_forward_metadata_capture_cuda_graph(
self,
bs: int,
num_tokens: int,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
encoder_lens: Optional[torch.Tensor],
forward_mode: ForwardMode,
spec_info: Optional[SpecInfo],
):
if forward_mode.is_decode_or_idle():
if spec_info is None:
max_seqlen_pad = triton.cdiv(seq_lens.max().item(), PAGE_SIZE)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
req_pool_indices,
seq_lens,
None,
self.cuda_graph_kv_indices,
self.req_to_token.stride(0),
self.cuda_graph_kv_indices.stride(0),
)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32),
Q_LEN * self.num_q_heads // self.num_kv_heads,
self.num_kv_heads,
)
self.cuda_graph_mla_metadata.copy_(mla_metadata)
self.cuda_graph_num_splits[: bs + 1].copy_(num_splits)
self.forward_metadata = FlashMLADecodeMetadata(
self.cuda_graph_mla_metadata,
self.cuda_graph_num_splits[: bs + 1],
self.cuda_graph_kv_indices[:bs, :max_seqlen_pad],
)
else:
super().init_forward_metadata_capture_cuda_graph(
bs,
num_tokens,
req_pool_indices,
seq_lens,
encoder_lens,
forward_mode,
spec_info,
)
def init_forward_metadata_replay_cuda_graph(
self,
bs: int,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
seq_lens_sum: int,
encoder_lens: Optional[torch.Tensor],
forward_mode: ForwardMode,
spec_info: Optional[SpecInfo],
seq_lens_cpu: Optional[torch.Tensor],
):
if forward_mode.is_decode_or_idle():
assert seq_lens_cpu is not None
seq_lens = seq_lens[:bs]
seq_lens_cpu = seq_lens_cpu[:bs]
max_seqlen_pad = triton.cdiv(seq_lens_cpu.max().item(), PAGE_SIZE)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
req_pool_indices[:bs],
seq_lens,
None,
self.cuda_graph_kv_indices,
self.req_to_token.stride(0),
self.cuda_graph_kv_indices.stride(0),
)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32),
Q_LEN * self.num_q_heads // self.num_kv_heads,
self.num_kv_heads,
)
self.cuda_graph_mla_metadata.copy_(mla_metadata)
self.cuda_graph_num_splits[: bs + 1].copy_(num_splits)
self.forward_metadata.mla_metadata = self.cuda_graph_mla_metadata
self.forward_metadata.num_splits = self.cuda_graph_num_splits[: bs + 1]
self.forward_metadata.block_kv_indices = self.cuda_graph_kv_indices[
:bs, :max_seqlen_pad
]
else:
super().init_forward_metadata_replay_cuda_graph(
bs,
req_pool_indices,
seq_lens,
seq_lens_sum,
encoder_lens,
forward_mode,
spec_info,
seq_lens_cpu,
)
def forward_decode(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
layer: RadixAttention,
forward_batch: ForwardBatch,
save_kv_cache: bool = True,
):
cache_loc = forward_batch.out_cache_loc
if k is not None:
assert v is not None
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer,
cache_loc,
k,
v,
)
bs = forward_batch.batch_size
k_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
reshape_q = q.view(bs, -1, layer.tp_q_head_num, layer.head_dim)
o, _ = flash_mla_with_kvcache(
q=reshape_q,
k_cache=k_cache.view(-1, PAGE_SIZE, 1, self.kv_cache_dim),
block_table=self.forward_metadata.block_kv_indices,
cache_seqlens=forward_batch.seq_lens.to(torch.int32),
head_dim_v=self.kv_lora_rank, # TODO Retrieve from config.
tile_scheduler_metadata=self.forward_metadata.flashmla_metadata,
num_splits=self.forward_metadata.num_splits,
softmax_scale=layer.scaling,
causal=False,
)
return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)