sglang0.4.5.post1/python/sglang/srt/layers/attention/torch_native_backend.py

263 lines
9.1 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING
import torch
from torch.nn.functional import scaled_dot_product_attention
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
if TYPE_CHECKING:
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.model_runner import ModelRunner
class TorchNativeAttnBackend(AttentionBackend):
def __init__(self, model_runner: ModelRunner):
super().__init__()
self.forward_metadata = None
self.device = model_runner.device
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init the metadata for a forward pass."""
pass
def _run_sdpa_forward_extend(
self,
query: torch.Tensor,
output: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
req_to_token: torch.Tensor,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
extend_prefix_lens: torch.Tensor,
extend_seq_lens: torch.Tensor,
scaling=None,
enable_gqa=False,
causal=False,
):
"""Run the extend forward by using torch native sdpa op.
Args:
query: [num_tokens, num_heads, head_size]
output: [num_tokens, num_heads, head_size]
k_cache: [max_total_num_tokens, num_heads, head_size]
v_cache: [max_total_num_tokens, num_heads, head_size]
req_to_token: [max_num_reqs, max_context_len]
req_pool_indices: [num_seqs]
seq_lens: [num_seqs]
extend_prefix_lens: [num_seqs]
extend_seq_lens: [num_seqs]
scaling: float or None
enable_gqa: bool
causal: bool
Returns:
output: [num_tokens, num_heads, head_size]
"""
assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
assert seq_lens.shape[0] == extend_seq_lens.shape[0]
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
query = query.movedim(0, query.dim() - 2)
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
# TODO: this loop process a sequence per iter, this is inefficient.
# Need optimize the performance later.
extend_seq_len_q = extend_seq_lens[seq_idx]
prefill_seq_len_q = extend_prefix_lens[seq_idx]
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + extend_seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
per_req_query_redudant = torch.empty(
(per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
dtype=per_req_query.dtype,
device=per_req_query.device,
)
per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_out_redudant = (
scaled_dot_product_attention(
per_req_query_redudant.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
enable_gqa=enable_gqa,
scale=scaling,
is_causal=causal,
)
.squeeze(0)
.movedim(query.dim() - 2, 0)
)
output[start_q:end_q, :, :] = per_req_out_redudant[prefill_seq_len_q:, :, :]
start_q, start_kv = end_q, end_kv
return output
def _run_sdpa_forward_decode(
self,
query: torch.Tensor,
output: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
req_to_token: torch.Tensor,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
scaling=None,
enable_gqa=False,
causal=False,
):
"""Run the decode forward by using torch native sdpa op.
Args:
query: [num_tokens, num_heads, head_size]
output: [num_tokens, num_heads, head_size]
k_cache: [max_total_num_tokens, num_heads, head_size]
v_cache: [max_total_num_tokens, num_heads, head_size]
req_to_token: [max_num_reqs, max_context_len]
req_pool_indices: [num_seqs]
seq_lens: [num_seqs]
scaling: float or None
enable_gqa: bool
causal: bool
Returns:
output: [num_tokens, num_heads, head_size]
"""
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
query = query.movedim(0, query.dim() - 2)
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
# TODO: this loop process a sequence per iter, this is inefficient.
# Need optimize the performance later.
seq_len_q = 1
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_out = (
scaled_dot_product_attention(
per_req_query.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
enable_gqa=enable_gqa,
scale=scaling,
is_causal=causal,
)
.squeeze(0)
.movedim(query.dim() - 2, 0)
)
output[start_q:end_q, :, :] = per_req_out
start_q, start_kv = end_q, end_kv
return output
def forward_extend(
self,
q,
k,
v,
layer: RadixAttention,
forward_batch: ForwardBatch,
save_kv_cache=True,
):
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, forward_batch.out_cache_loc, k, v
)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view(-1, layer.tp_q_head_num, layer.qk_head_dim)
o_ = o.view(-1, layer.tp_q_head_num, layer.v_head_dim)
self._run_sdpa_forward_extend(
q_,
o_,
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
forward_batch.extend_prefix_lens,
forward_batch.extend_seq_lens,
scaling=layer.scaling,
enable_gqa=use_gqa,
causal=not layer.is_cross_attention,
)
return o
def forward_decode(
self,
q,
k,
v,
layer: RadixAttention,
forward_batch: ForwardBatch,
save_kv_cache=True,
):
# During torch.compile, there is a bug in rotary_emb that causes the
# output value to have a 3D tensor shape. This reshapes the output correctly.
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, forward_batch.out_cache_loc, k, v
)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view(-1, layer.tp_q_head_num, layer.qk_head_dim)
o_ = o.view(-1, layer.tp_q_head_num, layer.v_head_dim)
self._run_sdpa_forward_decode(
q_,
o_,
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
scaling=layer.scaling,
enable_gqa=use_gqa,
causal=False,
)
return o