263 lines
9.1 KiB
Python
263 lines
9.1 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
import torch
|
|
from torch.nn.functional import scaled_dot_product_attention
|
|
|
|
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
|
|
if TYPE_CHECKING:
|
|
from sglang.srt.layers.radix_attention import RadixAttention
|
|
from sglang.srt.model_executor.model_runner import ModelRunner
|
|
|
|
|
|
class TorchNativeAttnBackend(AttentionBackend):
|
|
def __init__(self, model_runner: ModelRunner):
|
|
super().__init__()
|
|
self.forward_metadata = None
|
|
self.device = model_runner.device
|
|
|
|
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
|
"""Init the metadata for a forward pass."""
|
|
pass
|
|
|
|
def _run_sdpa_forward_extend(
|
|
self,
|
|
query: torch.Tensor,
|
|
output: torch.Tensor,
|
|
k_cache: torch.Tensor,
|
|
v_cache: torch.Tensor,
|
|
req_to_token: torch.Tensor,
|
|
req_pool_indices: torch.Tensor,
|
|
seq_lens: torch.Tensor,
|
|
extend_prefix_lens: torch.Tensor,
|
|
extend_seq_lens: torch.Tensor,
|
|
scaling=None,
|
|
enable_gqa=False,
|
|
causal=False,
|
|
):
|
|
"""Run the extend forward by using torch native sdpa op.
|
|
|
|
Args:
|
|
query: [num_tokens, num_heads, head_size]
|
|
output: [num_tokens, num_heads, head_size]
|
|
k_cache: [max_total_num_tokens, num_heads, head_size]
|
|
v_cache: [max_total_num_tokens, num_heads, head_size]
|
|
req_to_token: [max_num_reqs, max_context_len]
|
|
req_pool_indices: [num_seqs]
|
|
seq_lens: [num_seqs]
|
|
extend_prefix_lens: [num_seqs]
|
|
extend_seq_lens: [num_seqs]
|
|
scaling: float or None
|
|
enable_gqa: bool
|
|
causal: bool
|
|
|
|
Returns:
|
|
output: [num_tokens, num_heads, head_size]
|
|
"""
|
|
|
|
assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
|
|
assert seq_lens.shape[0] == extend_seq_lens.shape[0]
|
|
|
|
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
|
|
query = query.movedim(0, query.dim() - 2)
|
|
|
|
start_q, start_kv = 0, 0
|
|
for seq_idx in range(seq_lens.shape[0]):
|
|
# TODO: this loop process a sequence per iter, this is inefficient.
|
|
# Need optimize the performance later.
|
|
|
|
extend_seq_len_q = extend_seq_lens[seq_idx]
|
|
prefill_seq_len_q = extend_prefix_lens[seq_idx]
|
|
|
|
seq_len_kv = seq_lens[seq_idx]
|
|
end_q = start_q + extend_seq_len_q
|
|
end_kv = start_kv + seq_len_kv
|
|
|
|
per_req_query = query[:, start_q:end_q, :]
|
|
per_req_query_redudant = torch.empty(
|
|
(per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
|
|
dtype=per_req_query.dtype,
|
|
device=per_req_query.device,
|
|
)
|
|
|
|
per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query
|
|
|
|
# get key and value from cache. per_req_tokens contains the kv cache
|
|
# index for each token in the sequence.
|
|
req_pool_idx = req_pool_indices[seq_idx]
|
|
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
|
|
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
|
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
|
|
|
per_req_out_redudant = (
|
|
scaled_dot_product_attention(
|
|
per_req_query_redudant.unsqueeze(0),
|
|
per_req_key.unsqueeze(0),
|
|
per_req_value.unsqueeze(0),
|
|
enable_gqa=enable_gqa,
|
|
scale=scaling,
|
|
is_causal=causal,
|
|
)
|
|
.squeeze(0)
|
|
.movedim(query.dim() - 2, 0)
|
|
)
|
|
output[start_q:end_q, :, :] = per_req_out_redudant[prefill_seq_len_q:, :, :]
|
|
start_q, start_kv = end_q, end_kv
|
|
return output
|
|
|
|
def _run_sdpa_forward_decode(
|
|
self,
|
|
query: torch.Tensor,
|
|
output: torch.Tensor,
|
|
k_cache: torch.Tensor,
|
|
v_cache: torch.Tensor,
|
|
req_to_token: torch.Tensor,
|
|
req_pool_indices: torch.Tensor,
|
|
seq_lens: torch.Tensor,
|
|
scaling=None,
|
|
enable_gqa=False,
|
|
causal=False,
|
|
):
|
|
"""Run the decode forward by using torch native sdpa op.
|
|
|
|
Args:
|
|
query: [num_tokens, num_heads, head_size]
|
|
output: [num_tokens, num_heads, head_size]
|
|
k_cache: [max_total_num_tokens, num_heads, head_size]
|
|
v_cache: [max_total_num_tokens, num_heads, head_size]
|
|
req_to_token: [max_num_reqs, max_context_len]
|
|
req_pool_indices: [num_seqs]
|
|
seq_lens: [num_seqs]
|
|
scaling: float or None
|
|
enable_gqa: bool
|
|
causal: bool
|
|
|
|
Returns:
|
|
output: [num_tokens, num_heads, head_size]
|
|
"""
|
|
|
|
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
|
|
query = query.movedim(0, query.dim() - 2)
|
|
|
|
start_q, start_kv = 0, 0
|
|
for seq_idx in range(seq_lens.shape[0]):
|
|
# TODO: this loop process a sequence per iter, this is inefficient.
|
|
# Need optimize the performance later.
|
|
|
|
seq_len_q = 1
|
|
seq_len_kv = seq_lens[seq_idx]
|
|
end_q = start_q + seq_len_q
|
|
end_kv = start_kv + seq_len_kv
|
|
|
|
per_req_query = query[:, start_q:end_q, :]
|
|
|
|
# get key and value from cache. per_req_tokens contains the kv cache
|
|
# index for each token in the sequence.
|
|
req_pool_idx = req_pool_indices[seq_idx]
|
|
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
|
|
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
|
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
|
|
|
per_req_out = (
|
|
scaled_dot_product_attention(
|
|
per_req_query.unsqueeze(0),
|
|
per_req_key.unsqueeze(0),
|
|
per_req_value.unsqueeze(0),
|
|
enable_gqa=enable_gqa,
|
|
scale=scaling,
|
|
is_causal=causal,
|
|
)
|
|
.squeeze(0)
|
|
.movedim(query.dim() - 2, 0)
|
|
)
|
|
output[start_q:end_q, :, :] = per_req_out
|
|
start_q, start_kv = end_q, end_kv
|
|
|
|
return output
|
|
|
|
def forward_extend(
|
|
self,
|
|
q,
|
|
k,
|
|
v,
|
|
layer: RadixAttention,
|
|
forward_batch: ForwardBatch,
|
|
save_kv_cache=True,
|
|
):
|
|
if layer.qk_head_dim != layer.v_head_dim:
|
|
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
|
else:
|
|
o = torch.empty_like(q)
|
|
|
|
if save_kv_cache:
|
|
forward_batch.token_to_kv_pool.set_kv_buffer(
|
|
layer, forward_batch.out_cache_loc, k, v
|
|
)
|
|
|
|
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
|
|
|
|
q_ = q.view(-1, layer.tp_q_head_num, layer.qk_head_dim)
|
|
o_ = o.view(-1, layer.tp_q_head_num, layer.v_head_dim)
|
|
|
|
self._run_sdpa_forward_extend(
|
|
q_,
|
|
o_,
|
|
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
|
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
|
forward_batch.req_to_token_pool.req_to_token,
|
|
forward_batch.req_pool_indices,
|
|
forward_batch.seq_lens,
|
|
forward_batch.extend_prefix_lens,
|
|
forward_batch.extend_seq_lens,
|
|
scaling=layer.scaling,
|
|
enable_gqa=use_gqa,
|
|
causal=not layer.is_cross_attention,
|
|
)
|
|
return o
|
|
|
|
def forward_decode(
|
|
self,
|
|
q,
|
|
k,
|
|
v,
|
|
layer: RadixAttention,
|
|
forward_batch: ForwardBatch,
|
|
save_kv_cache=True,
|
|
):
|
|
# During torch.compile, there is a bug in rotary_emb that causes the
|
|
# output value to have a 3D tensor shape. This reshapes the output correctly.
|
|
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
|
|
|
|
if layer.qk_head_dim != layer.v_head_dim:
|
|
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
|
else:
|
|
o = torch.empty_like(q)
|
|
|
|
if save_kv_cache:
|
|
forward_batch.token_to_kv_pool.set_kv_buffer(
|
|
layer, forward_batch.out_cache_loc, k, v
|
|
)
|
|
|
|
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
|
|
|
|
q_ = q.view(-1, layer.tp_q_head_num, layer.qk_head_dim)
|
|
o_ = o.view(-1, layer.tp_q_head_num, layer.v_head_dim)
|
|
|
|
self._run_sdpa_forward_decode(
|
|
q_,
|
|
o_,
|
|
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
|
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
|
forward_batch.req_to_token_pool.req_to_token,
|
|
forward_batch.req_pool_indices,
|
|
forward_batch.seq_lens,
|
|
scaling=layer.scaling,
|
|
enable_gqa=use_gqa,
|
|
causal=False,
|
|
)
|
|
|
|
return o
|