sglang0.4.5.post1/python/sglang/srt/layers/moe/ep_moe/kernels.py

568 lines
18 KiB
Python

import logging
from typing import List, Optional
import torch
import triton
import triton.language as tl
from sglang.srt.distributed import get_tensor_model_parallel_rank
from sglang.srt.layers.quantization.fp8_kernel import per_token_group_quant_fp8
from sglang.srt.utils import is_cuda
_is_cuda = is_cuda()
if _is_cuda:
from sglang.srt.layers.quantization.fp8_kernel import (
sglang_per_token_group_quant_fp8,
)
logger = logging.getLogger(__name__)
@triton.jit
def deepep_permute_triton_kernel(
input_ptr,
gateup_input_ptr,
src2dst_ptr,
topk_ids_ptr,
a1_scales_ptr,
topk,
hidden_size,
BLOCK_SIZE: tl.constexpr,
):
OutDtype = gateup_input_ptr.dtype.element_ty
src_idx = tl.program_id(0)
src2dst_ptr = src2dst_ptr + src_idx * topk
topk_ids_ptr = topk_ids_ptr + src_idx * topk
src_ptr = input_ptr + src_idx * hidden_size
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < hidden_size
in_data = tl.load(src_ptr + offset, mask=mask).to(OutDtype)
for idx in range(topk):
dst_idx = tl.load(src2dst_ptr + idx)
if dst_idx >= 0:
dst_ptr = gateup_input_ptr + dst_idx * hidden_size
tl.store(dst_ptr + offset, in_data, mask=mask)
@triton.jit
def deepep_post_reorder_triton_kernel(
down_output_ptr,
output_ptr,
src2dst_ptr,
topk_ids_ptr,
topk_weights_ptr,
topk,
hidden_size,
BLOCK_SIZE: tl.constexpr,
):
InDtype = down_output_ptr.dtype.element_ty
src_idx = tl.program_id(0)
src2dst_ptr = src2dst_ptr + src_idx * topk
topk_ids_ptr = topk_ids_ptr + src_idx * topk
topk_weights_ptr = topk_weights_ptr + src_idx * topk
store_ptr = output_ptr + src_idx * hidden_size
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < hidden_size
sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
for idx in range(topk):
dst_idx = tl.load(src2dst_ptr + idx)
if dst_idx >= 0:
weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
load_ptr = down_output_ptr + dst_idx * hidden_size
in_data = tl.load(load_ptr + offset, mask=mask)
sum_vec += in_data * weigh_scale
tl.store(store_ptr + offset, sum_vec, mask=mask)
@triton.jit
def compute_src2dst_triton_kernel(
reorder_ids, src2dst, num_toks, BLOCK_SIZE: tl.constexpr
):
pid = tl.program_id(axis=0)
dst_id = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = dst_id < num_toks
src_id = tl.load(reorder_ids + dst_id, mask=mask)
tl.store(src2dst + src_id, dst_id, mask=mask)
@triton.jit
def deepep_compute_src2dst_triton_kernel(
reorder_ids, src2dst, num_toks, num_minus_one, BLOCK_SIZE: tl.constexpr
):
pid = tl.program_id(axis=0)
dst_id = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = dst_id < num_toks
src_id = tl.load(reorder_ids + dst_id, mask=mask)
num_invalid = tl.load(num_minus_one)
tl.store(src2dst + src_id, dst_id - num_invalid, mask=mask)
def deepep_run_moe_deep_preprocess(topk_ids: torch.Tensor, num_experts: int):
reorder_topk_ids, reorder_ids = torch.sort(topk_ids.view(-1), stable=True)
seg_indptr = torch.empty(num_experts + 1, device=topk_ids.device, dtype=torch.int64)
src2dst = torch.empty(topk_ids.numel(), device=topk_ids.device, dtype=torch.int64)
# Find offet
expert_ids = torch.arange(
num_experts + 1, device=topk_ids.device, dtype=reorder_topk_ids.dtype
)
torch.searchsorted(reorder_topk_ids, expert_ids, out=seg_indptr)
num_minus_one = seg_indptr[0]
seg_indptr = seg_indptr - num_minus_one
BLOCK_SIZE = 512
grid = (triton.cdiv(topk_ids.numel(), BLOCK_SIZE),)
deepep_compute_src2dst_triton_kernel[grid](
reorder_ids, src2dst, topk_ids.numel(), num_minus_one, BLOCK_SIZE
)
reorder_topk_ids = reorder_topk_ids[num_minus_one:]
return reorder_topk_ids, src2dst, seg_indptr
@triton.jit
def compute_seg_indptr_triton_kernel(reorder_topk_ids, seg_indptr, num_toks):
expert = tl.program_id(0)
low = 0
high = num_toks - 1
target_location = -1
while low <= high:
mid = (low + high) // 2
if tl.load(reorder_topk_ids + mid) > expert:
high = mid - 1
else:
low = mid + 1
target_location = mid
tl.store(seg_indptr + expert + 1, target_location + 1)
def run_moe_ep_preproess(topk_ids: torch.Tensor, num_experts: int):
reorder_topk_ids, reorder_ids = torch.sort(topk_ids.view(-1), stable=True)
seg_indptr = torch.zeros(num_experts + 1, device=topk_ids.device, dtype=torch.int64)
src2dst = torch.empty(topk_ids.numel(), device=topk_ids.device, dtype=torch.int32)
compute_seg_indptr_triton_kernel[(num_experts,)](
reorder_topk_ids, seg_indptr, topk_ids.numel()
)
BLOCK_SIZE = 512
grid = (triton.cdiv(topk_ids.numel(), BLOCK_SIZE),)
compute_src2dst_triton_kernel[grid](
reorder_ids, src2dst, topk_ids.numel(), BLOCK_SIZE
)
return reorder_topk_ids, src2dst, seg_indptr
@triton.jit
def pre_reorder_triton_kernel(
input_ptr,
gateup_input_ptr,
src2dst_ptr,
topk_ids_ptr,
a1_scales_ptr,
start_expert_id,
end_expert_id,
topk,
hidden_size,
BLOCK_SIZE: tl.constexpr,
):
OutDtype = gateup_input_ptr.dtype.element_ty
src_idx = tl.program_id(0)
src2dst_ptr = src2dst_ptr + src_idx * topk
topk_ids_ptr = topk_ids_ptr + src_idx * topk
src_ptr = input_ptr + src_idx * hidden_size
for idx in range(topk):
expert_id = tl.load(topk_ids_ptr + idx)
if expert_id >= start_expert_id and expert_id <= end_expert_id:
if a1_scales_ptr is not None:
scale = 1.0 / tl.load(a1_scales_ptr + expert_id - start_expert_id)
else:
scale = 1.0
dst_idx = tl.load(src2dst_ptr + idx)
dst_ptr = gateup_input_ptr + dst_idx * hidden_size
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < hidden_size
in_data = tl.load(src_ptr + offset, mask=mask).to(tl.float32)
out_data = (in_data * scale).to(OutDtype)
tl.store(dst_ptr + offset, out_data, mask=mask)
@triton.jit
def silu_and_mul_triton_kernel(
gateup_output,
down_input,
hidden_size,
reorder_topk_ids,
scales,
start_expert_id,
end_expert_id,
BLOCK_SIZE: tl.constexpr,
):
InDtype = gateup_output.dtype.element_ty
OutDtype = down_input.dtype.element_ty
half_hidden_size = hidden_size // 2
pid = tl.program_id(0)
expert_id = tl.load(reorder_topk_ids + pid)
if expert_id >= start_expert_id and expert_id <= end_expert_id:
gateup_output_ptr = gateup_output + pid * hidden_size
gate_output_ptr = gateup_output_ptr
up_output_ptr = gateup_output_ptr + half_hidden_size
down_input_ptr = down_input + pid * half_hidden_size
if scales is not None:
scale = tl.load(scales + expert_id - start_expert_id)
scale = (1 / scale).to(InDtype)
else:
scale = 1
for start_offset in tl.range(0, half_hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < half_hidden_size
gate_output = tl.load(gate_output_ptr + offset, mask=mask).to(tl.float32)
up_output = tl.load(up_output_ptr + offset, mask=mask)
# silu & mul & quantize
gate_output = gate_output * tl.sigmoid(gate_output)
gate_output = gate_output.to(InDtype)
silu_mul_output = gate_output * up_output * scale
silu_mul_output = silu_mul_output.to(OutDtype)
tl.store(down_input_ptr + offset, silu_mul_output, mask=mask)
@triton.jit
def tanh(x):
return 2 * tl.sigmoid(2 * x) - 1
@triton.jit
def gelu_and_mul_triton_kernel(
gateup_output,
down_input,
hidden_size,
reorder_topk_ids,
scales,
start_expert_id,
end_expert_id,
BLOCK_SIZE: tl.constexpr,
):
InDtype = gateup_output.dtype.element_ty
OutDtype = down_input.dtype.element_ty
half_hidden_size = hidden_size // 2
pid = tl.program_id(0)
expert_id = tl.load(reorder_topk_ids + pid)
if expert_id >= start_expert_id and expert_id <= end_expert_id:
gateup_output_ptr = gateup_output + pid * hidden_size
gate_output_ptr = gateup_output_ptr
up_output_ptr = gateup_output_ptr + half_hidden_size
down_input_ptr = down_input + pid * half_hidden_size
if scales is not None:
scale = tl.load(scales + expert_id - start_expert_id)
scale = (1 / scale).to(InDtype)
else:
scale = 1
for start_offset in tl.range(0, half_hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < half_hidden_size
gate_output = tl.load(gate_output_ptr + offset, mask=mask).to(tl.float32)
up_output = tl.load(up_output_ptr + offset, mask=mask)
# gelu & mul & quantize
# https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
# sqrt(2/pi)
kAlpha = 0.7978845608028654
gate_output = (
0.5
* gate_output
* (
1
+ tanh(
kAlpha
* (
gate_output
+ 0.044715 * gate_output * gate_output * gate_output
)
)
)
)
gate_output = gate_output.to(InDtype)
gelu_mul_output = gate_output * up_output * scale
gelu_mul_output = gelu_mul_output.to(OutDtype)
tl.store(down_input_ptr + offset, gelu_mul_output, mask=mask)
@triton.jit
def post_reorder_triton_kernel(
down_output_ptr,
output_ptr,
src2dst_ptr,
topk_ids_ptr,
topk_weights_ptr,
start_expert_id,
end_expert_id,
topk,
hidden_size,
BLOCK_SIZE: tl.constexpr,
):
InDtype = down_output_ptr.dtype.element_ty
src_idx = tl.program_id(0)
src2dst_ptr = src2dst_ptr + src_idx * topk
topk_ids_ptr = topk_ids_ptr + src_idx * topk
topk_weights_ptr = topk_weights_ptr + src_idx * topk
computed = False
store_ptr = output_ptr + src_idx * hidden_size
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < hidden_size
sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
for idx in range(topk):
expert_id = tl.load(topk_ids_ptr + idx)
if expert_id >= start_expert_id and expert_id <= end_expert_id:
computed = True
dst_idx = tl.load(src2dst_ptr + idx)
weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
load_ptr = down_output_ptr + dst_idx * hidden_size
in_data = tl.load(load_ptr + offset, mask=mask)
sum_vec += in_data * weigh_scale
tl.store(store_ptr + offset, sum_vec, mask=mask)
if computed == False:
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
mask = offset < hidden_size
tl.store(
store_ptr + offset, tl.zeros([BLOCK_SIZE], dtype=InDtype), mask=mask
)
@triton.jit
def compute_m_range(
pid,
batch_size,
seg_indptr,
weight_indices,
m_num_tiles_indptr,
BLOCK_SIZE_M: tl.constexpr,
):
idx = 0
for bs in range(batch_size):
tiles = tl.load(m_num_tiles_indptr + bs)
if pid >= tiles:
idx = bs
idx_start = tl.load(m_num_tiles_indptr + idx)
m_range_start = tl.load(seg_indptr + idx) + (pid - idx_start) * BLOCK_SIZE_M
m_range_end = min(tl.load(seg_indptr + idx + 1), m_range_start + BLOCK_SIZE_M)
expert_id = tl.load(weight_indices + idx)
return m_range_start, m_range_end, expert_id
@triton.jit
def grouped_gemm_triton_kernel(
a,
b,
c,
batch_size,
N,
K,
seg_indptr,
weight_indices,
m_num_tiles_indptr,
scale_a,
scale_b,
use_fp8_w8a8: tl.constexpr,
group_n: tl.constexpr,
group_k: tl.constexpr,
a_stride_0: tl.constexpr,
b_stride_0: tl.constexpr,
b_stride_1: tl.constexpr,
as_stride_0: tl.constexpr,
as_stride_1: tl.constexpr,
bs_stride_0: tl.constexpr,
bs_stride_2: tl.constexpr,
bs_stride_1: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
):
c_dtype = c.dtype.element_ty
pid_m = tl.program_id(0)
pid_n = tl.program_id(1)
total_m_block = tl.load(m_num_tiles_indptr + batch_size)
if pid_m >= total_m_block:
return
m_range_start, m_range_end, expert_id = compute_m_range(
pid_m, batch_size, seg_indptr, weight_indices, m_num_tiles_indptr, BLOCK_SIZE_M
)
if m_range_end - m_range_start == 0:
return
n_range_start = pid_n * BLOCK_SIZE_N
n_range_end = min(n_range_start + BLOCK_SIZE_N, N)
offs_am = tl.arange(0, BLOCK_SIZE_M)
offs_bn = tl.arange(0, BLOCK_SIZE_N)
offs_am = tl.where(offs_am < m_range_end - m_range_start, offs_am, 0)
offs_bn = tl.where(offs_bn < n_range_end - n_range_start, offs_bn, 0)
offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptr = a + (m_range_start + offs_am[:, None]) * a_stride_0 + offs_k[None, :]
b_ptr = b + (
(expert_id * b_stride_0)
+ (n_range_start + offs_bn[:, None]) * b_stride_1
+ offs_k[None, :]
)
if group_k > 0 and group_n > 0:
a_scale_ptrs = scale_a + (m_range_start + offs_am[:, None]) * as_stride_0
offs_bsn = (n_range_start + offs_bn) // group_n
b_scale_ptrs = scale_b + (expert_id * bs_stride_0) + offs_bsn * bs_stride_1
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a_tile = tl.load(
a_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
)
b_tile = tl.load(
b_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
)
if group_k > 0 and group_n > 0:
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_scale = tl.load(a_scale_ptrs + offs_ks * as_stride_1)
b_scale = tl.load(b_scale_ptrs + offs_ks * bs_stride_2)
accumulator += tl.dot(a_tile, b_tile.T) * a_scale * b_scale[None, :]
else:
accumulator = tl.dot(a_tile, b_tile.T, accumulator)
a_ptr += BLOCK_SIZE_K
b_ptr += BLOCK_SIZE_K
if use_fp8_w8a8 and not (group_k > 0 and group_n > 0):
scale_a_value = tl.load(scale_a + expert_id)
scale_b_value = tl.load(scale_b + expert_id)
accumulator *= scale_a_value * scale_b_value
c_tile = accumulator.to(c_dtype)
offs_cm = m_range_start + tl.arange(0, BLOCK_SIZE_M)
offs_cn = n_range_start + tl.arange(0, BLOCK_SIZE_N)
c_ptr = c + offs_cm[:, None] * N + offs_cn[None, :]
c_mask = (offs_cm[:, None] < m_range_end) & (offs_cn[None, :] < n_range_end)
tl.store(c_ptr, c_tile, mask=c_mask)
@triton.jit
def compute_m_num_tiles_indptr(
m_num_tiles_indptr, seg_indptr, batch_size: tl.constexpr, BLOCK_SIZE_M: tl.constexpr
):
for bs in range(batch_size):
m = tl.load(seg_indptr + bs + 1) - tl.load(seg_indptr + bs)
cur_num_tiles = tl.cdiv(m, BLOCK_SIZE_M)
pre_num_tiles = tl.load(m_num_tiles_indptr + bs)
tl.store(m_num_tiles_indptr + bs + 1, pre_num_tiles + cur_num_tiles)
def grouped_gemm_triton(
a: torch.Tensor,
b: torch.Tensor,
c: torch.Tensor,
batch_size: int,
weight_column_major: bool,
seg_indptr: Optional[torch.Tensor] = None,
weight_indices: Optional[torch.Tensor] = None,
use_fp8_w8a8: bool = False,
scale_a: torch.Tensor = None,
scale_b: torch.Tensor = None,
block_shape: Optional[List[int]] = None,
):
assert weight_column_major == True # TODO: more
if use_fp8_w8a8 and block_shape is None:
assert scale_a is not None and scale_b is not None
if block_shape is not None:
assert len(block_shape) == 2
block_n, block_k = block_shape[0], block_shape[1]
if _is_cuda:
a, scale_a = sglang_per_token_group_quant_fp8(a, block_k)
else:
a, scale_a = per_token_group_quant_fp8(a, block_k)
assert triton.cdiv(a.shape[-1], block_k) == scale_a.shape[-1]
assert triton.cdiv(b.shape[-2], block_n) == scale_b.shape[-2]
assert triton.cdiv(b.shape[-1], block_k) == scale_b.shape[-1]
# TODO: adjust config or tune kernel
# Reduce block size to prevent L40 shared memory overflow.
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
}
m_num_tiles_indptr = torch.zeros(batch_size + 1, device=a.device, dtype=torch.int64)
compute_m_num_tiles_indptr[(1,)](
m_num_tiles_indptr, seg_indptr, batch_size, config["BLOCK_SIZE_M"]
)
grid = lambda META: (
triton.cdiv(a.size(0), META["BLOCK_SIZE_M"]) + batch_size,
triton.cdiv(b.size(1), META["BLOCK_SIZE_N"]),
)
grouped_gemm_triton_kernel[grid](
a,
b,
c,
batch_size,
b.size(1),
b.size(2),
seg_indptr,
weight_indices,
m_num_tiles_indptr,
scale_a,
scale_b,
use_fp8_w8a8,
0 if block_shape is None else block_shape[0],
0 if block_shape is None else block_shape[1],
a.stride(0),
b.stride(0),
b.stride(1),
scale_a.stride(0) if scale_a is not None and scale_a.ndim == 2 else 0,
scale_a.stride(1) if scale_a is not None and scale_a.ndim == 2 else 0,
scale_b.stride(0) if scale_b is not None and scale_b.ndim >= 2 else 0,
scale_b.stride(2) if scale_b is not None and scale_b.ndim == 3 else 0,
scale_b.stride(1) if scale_b is not None and scale_b.ndim >= 2 else 0,
**config,
)
return c