409 lines
14 KiB
Python
409 lines
14 KiB
Python
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/model_executor/layers/quantization/fp8.py
|
|
|
|
import logging
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn import Module
|
|
|
|
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
|
from sglang.srt.layers.linear import (
|
|
LinearBase,
|
|
LinearMethodBase,
|
|
UnquantizedLinearMethod,
|
|
)
|
|
from sglang.srt.layers.parameter import BlockQuantScaleParameter, ModelWeightParameter
|
|
from sglang.srt.layers.quantization.base_config import (
|
|
QuantizationConfig,
|
|
QuantizeMethodBase,
|
|
)
|
|
from sglang.srt.layers.quantization.int8_utils import apply_w8a8_block_int8_linear
|
|
from sglang.srt.layers.quantization.utils import is_layer_skipped
|
|
from sglang.srt.utils import set_weight_attrs
|
|
|
|
ACTIVATION_SCHEMES = ["static", "dynamic"]
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BlockInt8Config(QuantizationConfig):
|
|
"""Config class for INT8."""
|
|
|
|
def __init__(
|
|
self,
|
|
is_checkpoint_int8_serialized: bool = False,
|
|
activation_scheme: str = "dynamic",
|
|
ignored_layers: Optional[List[str]] = None,
|
|
weight_block_size: List[int] = None,
|
|
) -> None:
|
|
self.is_checkpoint_int8_serialized = is_checkpoint_int8_serialized
|
|
if is_checkpoint_int8_serialized:
|
|
logger.warning(
|
|
"Detected int8 checkpoint. Please note that the "
|
|
"format is experimental and subject to change."
|
|
)
|
|
if activation_scheme not in ACTIVATION_SCHEMES:
|
|
raise ValueError(f"Unsupported activation scheme {activation_scheme}")
|
|
self.activation_scheme = activation_scheme
|
|
self.ignored_layers = ignored_layers or []
|
|
if weight_block_size is not None:
|
|
if not is_checkpoint_int8_serialized:
|
|
raise ValueError(
|
|
f"The block-wise quantization only supports int8-serialized checkpoint for now."
|
|
)
|
|
if len(weight_block_size) != 2:
|
|
raise ValueError(
|
|
f"The quantization block size of weight must have 2 dimensions, but got {len(weight_block_size)} dimensions."
|
|
)
|
|
if activation_scheme != "dynamic":
|
|
raise ValueError(
|
|
f"The block-wise quantization only supports dynamic activation scheme for now, but got {activation_scheme} activation scheme."
|
|
)
|
|
self.weight_block_size = weight_block_size
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "blockwise_int8"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.bfloat16, torch.half]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "BlockInt8Config":
|
|
quant_method = cls.get_from_keys(config, ["quant_method"])
|
|
is_checkpoint_int8_serialized = "int8" in quant_method
|
|
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
|
|
ignored_layers = cls.get_from_keys_or(config, ["ignored_layers"], None)
|
|
weight_block_size = cls.get_from_keys_or(config, ["weight_block_size"], None)
|
|
return cls(
|
|
is_checkpoint_int8_serialized=is_checkpoint_int8_serialized,
|
|
activation_scheme=activation_scheme,
|
|
ignored_layers=ignored_layers,
|
|
weight_block_size=weight_block_size,
|
|
)
|
|
|
|
def get_quant_method(
|
|
self, layer: torch.nn.Module, prefix: str
|
|
) -> Optional["QuantizeMethodBase"]:
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
|
|
|
|
if isinstance(layer, LinearBase):
|
|
if is_layer_skipped(prefix, self.ignored_layers):
|
|
return UnquantizedLinearMethod()
|
|
return BlockInt8LinearMethod(self)
|
|
elif isinstance(layer, FusedMoE):
|
|
return BlockInt8MoEMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class BlockInt8LinearMethod(LinearMethodBase):
|
|
"""Linear method for INT8.
|
|
Supports loading INT8 checkpoints with static weight scale and
|
|
dynamic activation scale.
|
|
|
|
Limitations:
|
|
Only support block-wise int8 quantization and int8 checkpoint
|
|
|
|
Args:
|
|
quant_config: The quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: BlockInt8Config):
|
|
self.quant_config = quant_config
|
|
assert self.quant_config.weight_block_size is not None
|
|
assert self.quant_config.is_checkpoint_int8_serialized
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
block_n, block_k = (
|
|
self.quant_config.weight_block_size[0],
|
|
self.quant_config.weight_block_size[1],
|
|
)
|
|
# Required by row parallel
|
|
if tp_size > 1 and input_size // input_size_per_partition == tp_size:
|
|
if input_size_per_partition % block_k != 0:
|
|
raise ValueError(
|
|
f"Weight input_size_per_partition = "
|
|
f"{input_size_per_partition} is not divisible by "
|
|
f"weight quantization block_k = {block_k}."
|
|
)
|
|
# Required by collum parallel or enabling merged weights
|
|
if (tp_size > 1 and output_size // output_size_per_partition == tp_size) or len(
|
|
output_partition_sizes
|
|
) > 1:
|
|
for output_partition_size in output_partition_sizes:
|
|
if output_partition_size % block_n != 0:
|
|
raise ValueError(
|
|
f"Weight output_partition_size = "
|
|
f"{output_partition_size} is not divisible by "
|
|
f"weight quantization block_n = {block_n}."
|
|
)
|
|
|
|
layer.logical_widths = output_partition_sizes
|
|
|
|
layer.input_size_per_partition = input_size_per_partition
|
|
layer.output_size_per_partition = output_size_per_partition
|
|
layer.orig_dtype = params_dtype
|
|
|
|
# WEIGHT
|
|
weight_dtype = (
|
|
torch.int8
|
|
if self.quant_config.is_checkpoint_int8_serialized
|
|
else params_dtype
|
|
)
|
|
|
|
weight = ModelWeightParameter(
|
|
data=torch.empty(
|
|
output_size_per_partition, input_size_per_partition, dtype=weight_dtype
|
|
),
|
|
input_dim=1,
|
|
output_dim=0,
|
|
weight_loader=weight_loader,
|
|
)
|
|
layer.register_parameter("weight", weight)
|
|
|
|
# WEIGHT SCALE
|
|
|
|
scale = BlockQuantScaleParameter(
|
|
data=torch.empty(
|
|
(output_size_per_partition + block_n - 1) // block_n,
|
|
(input_size_per_partition + block_k - 1) // block_k,
|
|
dtype=torch.float32,
|
|
),
|
|
input_dim=1,
|
|
output_dim=0,
|
|
weight_loader=weight_loader,
|
|
)
|
|
scale[:] = torch.finfo(torch.float32).min
|
|
layer.register_parameter("weight_scale_inv", scale)
|
|
|
|
# INPUT ACTIVATION SCALE
|
|
assert self.quant_config.activation_scheme == "dynamic"
|
|
layer.register_parameter("input_scale", None)
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
# Block quant doesn't need to process weights after loading
|
|
# Use torch Parameter to avoid cuda graph capturing issue
|
|
layer.weight = torch.nn.Parameter(layer.weight.data, requires_grad=False)
|
|
layer.weight_scale_inv = torch.nn.Parameter(
|
|
layer.weight_scale_inv.data, requires_grad=False
|
|
)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return apply_w8a8_block_int8_linear(
|
|
input=x,
|
|
weight=layer.weight,
|
|
block_size=self.quant_config.weight_block_size,
|
|
weight_scale=layer.weight_scale_inv,
|
|
input_scale=None,
|
|
bias=bias,
|
|
)
|
|
|
|
|
|
class BlockInt8MoEMethod:
|
|
"""MoE method for INT8.
|
|
Supports loading INT8 checkpoints with static weight scale and
|
|
dynamic activation scale.
|
|
|
|
Limitations:
|
|
Only support block-wise int8 quantization and int8 checkpoint
|
|
|
|
Args:
|
|
quant_config: The quantization config.
|
|
"""
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoEMethodBase
|
|
|
|
if not hasattr(cls, "_initialized"):
|
|
original_init = cls.__init__
|
|
new_cls = type(
|
|
cls.__name__,
|
|
(FusedMoEMethodBase,),
|
|
{
|
|
"__init__": original_init,
|
|
**{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
|
|
},
|
|
)
|
|
obj = super(new_cls, new_cls).__new__(new_cls)
|
|
obj.__init__(*args, **kwargs)
|
|
return obj
|
|
return super().__new__(cls)
|
|
|
|
def __init__(self, quant_config):
|
|
self.quant_config = quant_config
|
|
assert self.quant_config.weight_block_size is not None
|
|
assert self.quant_config.is_checkpoint_int8_serialized
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: Module,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoeWeightScaleSupported
|
|
|
|
if self.quant_config.is_checkpoint_int8_serialized:
|
|
params_dtype = torch.int8
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
block_n, block_k = (
|
|
self.quant_config.weight_block_size[0],
|
|
self.quant_config.weight_block_size[1],
|
|
)
|
|
# NOTE(HandH1998): To ensure proper alignment of the block-wise quantization scales, the output_size of the weights for both the gate and up layers must be divisible by block_n.
|
|
# Required by collum parallel or enabling merged weights
|
|
if intermediate_size % block_n != 0:
|
|
raise ValueError(
|
|
f"The output_size of gate's and up's weight = "
|
|
f"{intermediate_size} is not divisible by "
|
|
f"weight quantization block_n = {block_n}."
|
|
)
|
|
if tp_size > 1:
|
|
# Required by row parallel
|
|
if intermediate_size % block_k != 0:
|
|
raise ValueError(
|
|
f"The input_size of down's weight = "
|
|
f"{intermediate_size} is not divisible by "
|
|
f"weight quantization block_k = {block_k}."
|
|
)
|
|
|
|
# WEIGHTS
|
|
w13_weight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts, 2 * intermediate_size, hidden_size, dtype=params_dtype
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_weight", w13_weight)
|
|
set_weight_attrs(w13_weight, extra_weight_attrs)
|
|
|
|
w2_weight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts, hidden_size, intermediate_size, dtype=params_dtype
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_weight", w2_weight)
|
|
set_weight_attrs(w2_weight, extra_weight_attrs)
|
|
|
|
# WEIGHT_SCALES
|
|
w13_weight_scale = torch.nn.Parameter(
|
|
torch.ones(
|
|
num_experts,
|
|
2 * ((intermediate_size + block_n - 1) // block_n),
|
|
(hidden_size + block_k - 1) // block_k,
|
|
dtype=torch.float32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
w2_weight_scale = torch.nn.Parameter(
|
|
torch.ones(
|
|
num_experts,
|
|
(hidden_size + block_n - 1) // block_n,
|
|
(intermediate_size + block_k - 1) // block_k,
|
|
dtype=torch.float32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
|
|
layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
|
|
|
|
extra_weight_attrs.update(
|
|
{"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
|
|
)
|
|
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
|
|
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
|
|
|
|
# INPUT_SCALES
|
|
assert self.quant_config.activation_scheme == "dynamic"
|
|
layer.w13_input_scale = None
|
|
layer.w2_input_scale = None
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
# Block quant doesn't need to process weights after loading
|
|
return
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool,
|
|
use_grouped_topk: bool,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
correction_bias: Optional[torch.Tensor] = None,
|
|
activation: str = "silu",
|
|
inplace: bool = True,
|
|
no_combine: bool = False,
|
|
) -> torch.Tensor:
|
|
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
|
|
from sglang.srt.layers.moe.topk import select_experts
|
|
|
|
# Expert selection
|
|
topk_weights, topk_ids = select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
use_grouped_topk=use_grouped_topk,
|
|
top_k=top_k,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function,
|
|
correction_bias=correction_bias,
|
|
)
|
|
|
|
# Expert fusion with INT8 quantization
|
|
return fused_experts(
|
|
x,
|
|
layer.w13_weight,
|
|
layer.w2_weight,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
inplace=inplace,
|
|
activation=activation,
|
|
use_int8_w8a8=True,
|
|
w1_scale=(layer.w13_weight_scale_inv),
|
|
w2_scale=(layer.w2_weight_scale_inv),
|
|
a1_scale=layer.w13_input_scale,
|
|
a2_scale=layer.w2_input_scale,
|
|
block_shape=self.quant_config.weight_block_size,
|
|
no_combine=no_combine,
|
|
)
|