sglang0.4.5.post1/python/sglang/srt/layers/quantization/utils.py

154 lines
5.5 KiB
Python

# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/utils/quant_utils.py
from types import MappingProxyType
from typing import List, Mapping, Tuple, Union
import torch
from sglang.srt.utils import is_cuda
_is_cuda = is_cuda()
if _is_cuda:
from sglang.srt.custom_op import scaled_fp8_quant as sgl_scaled_fp8_quant
else:
from vllm import _custom_ops as vllm_ops
def is_fp8_fnuz() -> bool:
# only device 0 is checked, this assumes MI300 platforms are homogeneous
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
def is_layer_skipped(
prefix: str,
ignored_layers: List[str],
fused_mapping: Mapping[str, List[str]] = MappingProxyType({}),
) -> bool:
# prefix: model.layers.0.self_attn.q_proj
# proj_name: q_proj
proj_name = prefix.split(".")[-1]
# Fused layers like gate_up_proj or qkv_proj will not be fused
# in the safetensors checkpoint. So, we convert the name
# from the fused version to unfused + check to make sure that
# each shard of the fused layer has the same scheme.
if proj_name in fused_mapping:
shard_prefixes = [
prefix.replace(proj_name, shard_proj_name)
for shard_proj_name in fused_mapping[proj_name]
]
is_skipped = None
for shard_prefix in shard_prefixes:
is_shard_skipped = shard_prefix in ignored_layers
if is_skipped is None:
is_skipped = is_shard_skipped
elif is_shard_skipped != is_skipped:
raise ValueError(
f"Detected some but not all shards of {prefix} "
"are quantized. All shards of fused layers "
"to have the same precision."
)
else:
is_skipped = prefix in ignored_layers
assert is_skipped is not None
return is_skipped
def per_tensor_dequantize(
tensor: torch.Tensor, inv_scale: Union[float, torch.Tensor]
) -> torch.Tensor:
fake_qweight = tensor.to(torch.float16)
dq_weight = fake_qweight * inv_scale
return dq_weight
def all_close_1d(x: torch.Tensor) -> bool:
assert len(x.shape) == 1
return all(torch.allclose(x[0], x[i]) for i in range(x.shape[0]))
def convert_to_channelwise(
weight_scale: torch.Tensor, logical_widths: List[int]
) -> Tuple[torch.Tensor, torch.Tensor]:
# Create channelwise buffer
weight_scale_channel = torch.empty(
(sum(logical_widths), 1), dtype=torch.float32, device=weight_scale.device
)
# Handle scalar tensor case: broadcast same scale to all channels
if weight_scale.dim() == 0:
weight_scale_channel.fill_(weight_scale.item())
return weight_scale_channel
# Expand each scale to match the size of each logical matrix.
start = 0
for idx, logical_width in enumerate(logical_widths):
end = start + logical_width
weight_scale_channel[start:end, :] = weight_scale[idx]
start = end
return weight_scale_channel
def requantize_with_max_scale(
weight: torch.Tensor, weight_scale: torch.Tensor, logical_widths: List[int]
) -> Tuple[torch.Tensor, torch.Tensor]:
# Max scale to be used for requanitzation.
max_w_scale = weight_scale.max()
# QKV / MLP is fused in the on disk checkpoint if any of the
# weight scales are still set to the default since we initialize
# N weight scales for N shards but we only load 1 weight scale
# from disk in this case. Skip requantization in this case (since)
# we already are quantized with the single scale.
# * Sample Model: nm-testing/Phi-3-mini-128k-instruct-FP8
unfused_module_in_checkpoint = (
weight_scale[-1] > torch.finfo(torch.float8_e4m3fn).min
)
# If unfused checkpoint, need requanize with the single scale.
if unfused_module_in_checkpoint:
start = 0
for idx, logical_width in enumerate(logical_widths):
end = start + logical_width
weight_dq = per_tensor_dequantize(weight[start:end, :], weight_scale[idx])
if _is_cuda:
weight[start:end, :], _ = sgl_scaled_fp8_quant(weight_dq, max_w_scale)
else:
weight[start:end, :], _ = vllm_ops.scaled_fp8_quant(
weight_dq, max_w_scale
)
start = end
return max_w_scale, weight
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/utils/layer_utils.py
# Newly generated tensors need to replace existing tensors that are
# already registered as parameters by vLLM (and won't be freed)
def replace_parameter(
mod: torch.nn.Module, name: str, new: Union[torch.Tensor, torch.nn.Parameter]
) -> None:
old = getattr(mod, name)
if (
type(old) is type(new)
and old.dtype == new.dtype
and old.untyped_storage().nbytes() == new.untyped_storage().nbytes()
):
# If we can just update in-place to avoid re-registering
# can be faster if the underlying storage is the same
update_tensor_inplace(old, new)
else:
# Fallback re-register parameter, convert to Parameter if necessary
# this not only ensures we don't register a tensor as a parameter, but
# also ensures that all parameter subclasses get re-registered as
# parameters for `torch.compile` compatibility
if not isinstance(new, torch.nn.Parameter):
new = torch.nn.Parameter(new, requires_grad=False)
mod.register_parameter(name, torch.nn.Parameter(new, requires_grad=False))