267 lines
8.5 KiB
Python
267 lines
8.5 KiB
Python
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
|
|
from sglang.srt.utils import is_cuda_available, set_weight_attrs
|
|
|
|
is_cuda = is_cuda_available()
|
|
if is_cuda:
|
|
from sgl_kernel import int8_scaled_mm
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
|
from sglang.srt.layers.linear import LinearMethodBase
|
|
from sglang.srt.layers.parameter import ChannelQuantScaleParameter, ModelWeightParameter
|
|
from sglang.srt.layers.quantization.base_config import (
|
|
QuantizationConfig,
|
|
QuantizeMethodBase,
|
|
)
|
|
from sglang.srt.layers.quantization.int8_kernel import per_token_quant_int8
|
|
|
|
|
|
class W8A8Int8Config(QuantizationConfig):
|
|
"""Config class for W8A8 Int8 Quantization.
|
|
|
|
- Weight: static, per-channel, symmetric
|
|
- Activation: dynamic, per-token, symmetric
|
|
"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.float16, torch.bfloat16]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 75
|
|
|
|
@classmethod
|
|
def get_name(self) -> str:
|
|
return "w8a8_int8"
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "W8A8Int8Config":
|
|
return cls()
|
|
|
|
def get_quant_method(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
prefix: str,
|
|
) -> Optional["QuantizeMethodBase"]:
|
|
from sglang.srt.layers.linear import LinearBase
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
|
|
|
|
if isinstance(layer, LinearBase):
|
|
return W8A8Int8LinearMethod(self)
|
|
elif isinstance(layer, FusedMoE):
|
|
return W8A8Int8MoEMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class W8A8Int8LinearMethod(LinearMethodBase):
|
|
|
|
def __init__(self, quantization_config: W8A8Int8Config):
|
|
self.quantization_config = quantization_config
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
layer.weight = Parameter(layer.weight.t(), requires_grad=False)
|
|
layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
self.logical_widths = output_partition_sizes
|
|
|
|
weight = ModelWeightParameter(
|
|
data=torch.empty(
|
|
sum(output_partition_sizes), input_size_per_partition, dtype=torch.int8
|
|
),
|
|
input_dim=1,
|
|
output_dim=0,
|
|
weight_loader=weight_loader,
|
|
)
|
|
layer.register_parameter("weight", weight)
|
|
|
|
weight_scale = ChannelQuantScaleParameter(
|
|
data=torch.empty((sum(output_partition_sizes), 1), dtype=torch.float32),
|
|
output_dim=0,
|
|
weight_loader=weight_loader,
|
|
)
|
|
layer.register_parameter("weight_scale", weight_scale)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
):
|
|
x_q, x_scale = per_token_quant_int8(x)
|
|
|
|
return int8_scaled_mm(
|
|
x_q, layer.weight, x_scale, layer.weight_scale, out_dtype=x.dtype, bias=bias
|
|
)
|
|
|
|
|
|
class W8A8Int8MoEMethod:
|
|
"""MoE method for INT8.
|
|
Supports loading INT8 checkpoints with static weight scale and
|
|
dynamic/static activation scale.
|
|
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
|
|
activation scaling. The weight scaling factor will be initialized after
|
|
the model weights are loaded.
|
|
Args:
|
|
quant_config: The quantization config.
|
|
"""
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoEMethodBase
|
|
|
|
if not hasattr(cls, "_initialized"):
|
|
original_init = cls.__init__
|
|
new_cls = type(
|
|
cls.__name__,
|
|
(FusedMoEMethodBase,),
|
|
{
|
|
"__init__": original_init,
|
|
**{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
|
|
},
|
|
)
|
|
obj = super(new_cls, new_cls).__new__(new_cls)
|
|
obj.__init__(*args, **kwargs)
|
|
return obj
|
|
return super().__new__(cls)
|
|
|
|
def __init__(self, quant_config):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoeWeightScaleSupported
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
# WEIGHTS
|
|
w13_weight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts, 2 * intermediate_size, hidden_size, dtype=torch.int8
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_weight", w13_weight)
|
|
set_weight_attrs(w13_weight, extra_weight_attrs)
|
|
|
|
w2_weight = torch.nn.Parameter(
|
|
torch.empty(num_experts, hidden_size, intermediate_size, dtype=torch.int8),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_weight", w2_weight)
|
|
set_weight_attrs(w2_weight, extra_weight_attrs)
|
|
|
|
w13_weight_scale = torch.nn.Parameter(
|
|
torch.ones(num_experts, 2 * intermediate_size, 1, dtype=torch.float32),
|
|
requires_grad=False,
|
|
)
|
|
w2_weight_scale = torch.nn.Parameter(
|
|
torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_weight_scale", w13_weight_scale)
|
|
layer.register_parameter("w2_weight_scale", w2_weight_scale)
|
|
|
|
extra_weight_attrs.update(
|
|
{"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
|
|
)
|
|
|
|
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
|
|
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
|
|
|
|
w13_input_scale = None
|
|
layer.register_parameter("w13_input_scale", w13_input_scale)
|
|
|
|
w2_input_scale = None
|
|
layer.register_parameter("w2_input_scale", w2_input_scale)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
layer.w13_weight = Parameter(layer.w13_weight, requires_grad=False)
|
|
layer.w2_weight = Parameter(layer.w2_weight, requires_grad=False)
|
|
layer.w13_weight_scale = Parameter(
|
|
layer.w13_weight_scale.data, requires_grad=False
|
|
)
|
|
layer.w2_weight_scale = Parameter(
|
|
layer.w2_weight_scale.data, requires_grad=False
|
|
)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool,
|
|
use_grouped_topk: bool,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
correction_bias: Optional[torch.Tensor] = None,
|
|
activation: str = "silu",
|
|
inplace: bool = True,
|
|
no_combine: bool = False,
|
|
) -> torch.Tensor:
|
|
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
|
|
from sglang.srt.layers.moe.topk import select_experts
|
|
|
|
# Expert selection
|
|
topk_weights, topk_ids = select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
use_grouped_topk=use_grouped_topk,
|
|
top_k=top_k,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function,
|
|
correction_bias=correction_bias,
|
|
)
|
|
|
|
return fused_experts(
|
|
x,
|
|
layer.w13_weight,
|
|
layer.w2_weight,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
inplace=inplace,
|
|
activation=activation,
|
|
use_int8_w8a8=True,
|
|
w1_scale=(layer.w13_weight_scale),
|
|
w2_scale=(layer.w2_weight_scale),
|
|
a1_scale=layer.w13_input_scale,
|
|
a2_scale=layer.w2_input_scale,
|
|
no_combine=no_combine,
|
|
)
|