182 lines
7.3 KiB
Python
182 lines
7.3 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
# Integrates "S-LoRA: Serving Thousands of Concurrent LoRA Adapters"
|
|
# and "Punica: Multi-Tenant LoRA Serving"
|
|
|
|
# LoRA layers class inheritance adapted from:
|
|
# https://github.com/vllm-project/vllm/blob/4abf6336ec65c270343eb895e7b18786e9274176/vllm/lora/layers.py
|
|
|
|
import logging
|
|
import re
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from sglang.srt.configs.load_config import LoadConfig
|
|
from sglang.srt.hf_transformers_utils import AutoConfig
|
|
from sglang.srt.lora.backend import BaseLoRABackend
|
|
from sglang.srt.lora.lora_config import LoRAConfig
|
|
from sglang.srt.model_loader.loader import DefaultModelLoader
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LoRALayer(nn.Module):
|
|
def __init__(self, config: LoRAConfig, base_hf_config: AutoConfig):
|
|
super().__init__()
|
|
self.config: LoRAConfig = config
|
|
self.base_hf_config: AutoConfig = base_hf_config
|
|
|
|
# lora weights in cpu. The weights are loaded from checkpoint.
|
|
self.weights: Dict[str, torch.Tensor] = {}
|
|
|
|
|
|
class LoRAAdapter(nn.Module):
|
|
def __init__(
|
|
self,
|
|
uid: str,
|
|
config: LoRAConfig,
|
|
base_hf_config: AutoConfig,
|
|
load_config: LoadConfig,
|
|
lora_backend: BaseLoRABackend,
|
|
):
|
|
super().__init__()
|
|
self.uid: str = uid
|
|
self.config: LoRAConfig = config
|
|
assert self.config.hf_config["peft_type"].lower() == "lora"
|
|
self.base_hf_config: AutoConfig = base_hf_config
|
|
self.load_config: LoadConfig = load_config
|
|
self.lora_backend: BaseLoRABackend = lora_backend
|
|
self.scaling: float = self.config.lora_alpha / self.config.r
|
|
|
|
self.layers: List[LoRALayer] = nn.ModuleList(
|
|
[
|
|
LoRALayer(config, base_hf_config)
|
|
for i in range(base_hf_config.num_hidden_layers)
|
|
]
|
|
)
|
|
|
|
self.weights: Dict[str, torch.Tensor] = {}
|
|
|
|
# initialize the LoRA weights to cpu
|
|
def initialize_weights(self):
|
|
model_path = self.config.path
|
|
loader = DefaultModelLoader(self.load_config)
|
|
revision = getattr(self.config.hf_config, "revision", None)
|
|
for name, loaded_weight in loader._get_weights_iterator(
|
|
DefaultModelLoader.Source(
|
|
model_path, revision=revision, fall_back_to_pt=True
|
|
)
|
|
):
|
|
match = re.search(r"layers\.(\d+)\.", name)
|
|
if match is not None:
|
|
layer_id = int(match.group(1))
|
|
self.layers[layer_id].weights[name] = loaded_weight.cpu()
|
|
else:
|
|
self.weights[name] = loaded_weight.cpu()
|
|
|
|
# stack kv_proj and gate_up_proj
|
|
for i in range(self.base_hf_config.num_hidden_layers):
|
|
layer = self.layers[i]
|
|
weight_names = [name for name, _ in layer.weights.items()]
|
|
self.stack_qkv_proj(weight_names, layer.weights)
|
|
self.stack_gate_up_proj(weight_names, layer.weights)
|
|
|
|
def stack_qkv_proj(self, weight_names: List[str], weights: Dict[str, torch.Tensor]):
|
|
|
|
# Collect target q/k/v modules. This process is necessary since there might be no lora attached to k_proj
|
|
target_module = set()
|
|
for weight_name in weight_names:
|
|
if "k_proj" in weight_name:
|
|
target_module.add("k_proj")
|
|
if "q_proj" in weight_name:
|
|
target_module.add("q_proj")
|
|
if "v_proj" in weight_name:
|
|
target_module.add("v_proj")
|
|
if len(target_module) == 0:
|
|
return
|
|
|
|
for weight_name in weight_names:
|
|
# We assume every lora adaptor should contain lora modules for q_proj
|
|
if "q_proj" in weight_name:
|
|
q_name = weight_name
|
|
k_name = weight_name.replace("q_proj", "k_proj")
|
|
v_name = weight_name.replace("q_proj", "v_proj")
|
|
kv_name = weight_name.replace("q_proj", "kv_proj")
|
|
qkv_name = weight_name.replace("q_proj", "qkv_proj")
|
|
|
|
# If k_proj doesn't have lora, initialize it to zero
|
|
k_proj_weight = (
|
|
weights[k_name]
|
|
if "k_proj" in target_module
|
|
else torch.zeros_like(weights[v_name])
|
|
)
|
|
if "lora_A" in weight_name:
|
|
weights[qkv_name] = torch.cat(
|
|
(
|
|
weights[q_name],
|
|
k_proj_weight,
|
|
weights[v_name],
|
|
),
|
|
0,
|
|
)
|
|
weights.pop(q_name)
|
|
if "k_proj" in target_module:
|
|
weights.pop(k_name)
|
|
weights.pop(v_name)
|
|
else:
|
|
weights[kv_name] = torch.stack(
|
|
[
|
|
k_proj_weight,
|
|
weights[v_name],
|
|
],
|
|
dim=0,
|
|
)
|
|
if "k_proj" in target_module:
|
|
weights.pop(k_name)
|
|
weights.pop(v_name)
|
|
|
|
def stack_gate_up_proj(
|
|
self, weight_names: List[str], weights: Dict[str, torch.Tensor]
|
|
):
|
|
for weight_name in weight_names:
|
|
if "gate_proj" in weight_name:
|
|
up_name = weight_name.replace("gate_proj", "up_proj")
|
|
gate_up_name = weight_name.replace("gate_proj", "gate_up_proj")
|
|
if up_name not in weights:
|
|
logger.warning(
|
|
f"Gate projection {weight_name} does not have a corresponding up projection {up_name}. "
|
|
f"Initializing up projection to zero."
|
|
)
|
|
weights[up_name] = torch.zeros_like(weights[weight_name])
|
|
# FIXME: Add gate-only support for flashinfer in future implementations
|
|
assert self.lora_backend.name == "triton", (
|
|
f"LoRA weight initialization currently only supported for 'triton' backend. "
|
|
f"Received backend: {self.lora_backend.name}. Please verify your backend configuration "
|
|
f"or consider implementing custom initialization logic for other backends."
|
|
)
|
|
if "lora_A" in weight_name:
|
|
weights[gate_up_name] = torch.cat(
|
|
(weights[weight_name], weights[up_name]), 0
|
|
)
|
|
else:
|
|
weights[gate_up_name] = torch.stack(
|
|
[weights[weight_name], weights[up_name]], dim=0
|
|
)
|
|
weights.pop(weight_name)
|
|
if up_name in weights:
|
|
weights.pop(up_name)
|