sglang0.4.5.post1/python/sglang/srt/lora/utils.py

159 lines
5.1 KiB
Python

import re
from dataclasses import dataclass
from enum import Enum
from typing import Optional, Set, Tuple
import torch
from sglang.srt.hf_transformers_utils import AutoConfig
@dataclass
class LoRABatchInfo:
# Batch size
bs: int
# Lengths of each sequence in shape (bs,)
seg_lens: torch.Tensor
# Indice pointers of each sequence in shape (bs + 1, )
seg_indptr: torch.Tensor
# Maximum sequence length of current batch
max_len: int
# The index of lora adapter used by each sequence, in shape (bs,)
weight_indices: torch.Tensor
# ranks of each lora adapter, in shape (lora_num,)
lora_ranks: torch.Tensor
# scaling of each lora adapter, in shape (lora_num,)
scalings: torch.Tensor
class LoRAType(Enum):
LORA_A = 0
LORA_B = 1
def get_layer_id(name: str) -> int:
"""
Extract integer id of layer from its name in string.
"""
match = re.search(r"layers\.(\d+)\.", name)
if match is None:
return None
return int(match.group(1))
def get_customized_names_from_hf_names(
hf_module_names: Set[str], base_model: torch.nn.Module
) -> Set[str]:
"""
This function takes in a set of huggingface style module names:
e.g., {"k_proj", "q_proj", "v_proj", "o_proj"}
and outputs a set of module names of customized sglang layers:
e.g., {"qkv_proj", "o_proj"}
"""
if hasattr(base_model, "get_module_name"):
return {base_model.get_module_name(name) for name in hf_module_names}
else:
"""
Fallback solution of mapping from config module name to module name in model class.
Please check if it aligns with your base model.
Please implement the function in the model class if it is not.
You can reference this function in llama.py.
"""
params_mapping = {
"q_proj": "qkv_proj",
"k_proj": "qkv_proj",
"v_proj": "qkv_proj",
"gate_proj": "gate_up_proj",
"up_proj": "gate_up_proj",
}
return {params_mapping.get(name, name) for name in hf_module_names}
def get_hidden_dim(
module_name: str, config: AutoConfig, base_model: torch.nn.Module
) -> Tuple[int]:
"""
Given a module_name (might be a stacked name), return the hidden dims of modules's input and output.
"""
if hasattr(base_model, "get_hidden_dim"):
return base_model.get_hidden_dim(module_name)
else:
"""
WARNING: get_hidden_dim() is not defined,
which is used to get the hidden dim for different lora modules
Use the default one, but please check if it is correct for your model.
Please implement the function in the model class if it is not.
You can reference this function in llama.py.
"""
if module_name in ["q_proj", "o_proj", "qkv_proj"]:
return config.hidden_size, config.hidden_size
elif module_name in ["kv_proj"]:
return config.hidden_size, config.hidden_size // (
config.num_attention_heads // config.num_key_value_heads
)
elif module_name == "gate_up_proj":
return config.hidden_size, config.intermediate_size
elif module_name == "down_proj":
return config.intermediate_size, config.hidden_size
else:
raise NotImplementedError()
def get_stacked_name(name: str) -> Tuple[str]:
"""
Mapping a target module name to (stacked name for Lora A, stacked name for Lora B)
"""
params_mapping = {
"q_proj": ("qkv_proj", "q_proj"),
"k_proj": ("qkv_proj", "kv_proj"),
"v_proj": ("qkv_proj", "kv_proj"),
"gate_proj": ("gate_up_proj", "gate_up_proj"),
"up_proj": ("gate_up_proj", "gate_up_proj"),
}
return params_mapping.get(name, (name, name))
def get_stacked_multiply(module_name: str) -> int:
"""
Mapping a lora module name to its magnification at output dimension
"""
stacked_rank = {
"qkv_proj": 3,
"kv_proj": 2,
"gate_up_proj": 2,
}
return stacked_rank[module_name] if module_name in stacked_rank else 1
def get_weight_name(
target_name: str, lora_weight_names: Set[Tuple[str]], lora_type: LoRAType
) -> Optional[str]:
"""
target_name is name of a given module,
lora_weight_names is a set of lora stacked name pairs (see get_stacked_name method above)
If there is a weight name in lora_weight_names that can match target_name, return this name
Else raise ValueError.
"""
idx = 0 if lora_type == LoRAType.LORA_A else 1
for weight_name_pair in lora_weight_names:
if weight_name_pair[idx] in target_name:
return weight_name_pair[idx]
raise ValueError(
f"Cannot find weight name for {target_name} in {lora_weight_names}"
)
# TODO: [PR #4274] For future use to simplify the mapping between HF module names and customized module names.
VOCAB_PARALLELISM_EMBEDDING_NAMES = ["embeddings"]
COLUMN_PARALLELISM_LINEAR_LORA_NAMES = ["gate_proj", "up_proj"]
MERGED_COLUMN_PARALLELISM_LINEAR_LORA_NAMES = ["gate_up_proj"]
QKV_PARALLELISM_LINEAR_LORA_NAMES = ["qkv_proj"]
ROW_PARALLELISM_LINEAR_LORA_NAMES = ["o_proj", "down_proj"]