sglang0.4.5.post1/python/sglang/srt/managers/cache_controller.py

502 lines
18 KiB
Python

from __future__ import annotations
"""
Copyright 2023-2025 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import concurrent.futures
import logging
import math
import threading
from queue import Empty, Full, PriorityQueue, Queue
from typing import List, Optional
import torch
from sglang.srt.mem_cache.memory_pool import HostKVCache, TokenToKVPoolAllocator
logger = logging.getLogger(__name__)
class LayerDoneCounter:
def __init__(self, num_layers):
self.counter = num_layers
self.condition = threading.Condition()
def increment(self):
with self.condition:
self.counter += 1
self.condition.notify_all()
def wait_until(self, threshold):
with self.condition:
while self.counter <= threshold:
self.condition.wait()
def reset(self):
with self.condition:
self.counter = 0
class CacheOperation:
counter = 0
def __init__(
self,
host_indices: torch.Tensor,
device_indices: torch.Tensor,
node_id: int,
priority: Optional[int] = None,
):
self.host_indices = host_indices
self.device_indices = device_indices
self.node_ids = [node_id]
self.data = None
self.id = CacheOperation.counter
CacheOperation.counter += 1
# default priority is the order of creation
self.priority = priority if priority is not None else self.id
def merge(self, other: "CacheOperation") -> None:
# multiple operations can be merged into a single operation for batch processing
self.host_indices = torch.cat([self.host_indices, other.host_indices])
self.device_indices = torch.cat([self.device_indices, other.device_indices])
self.priority = min(self.priority, other.priority)
self.node_ids.extend(other.node_ids)
def split(self, factor) -> List["CacheOperation"]:
# split an operation into smaller operations to reduce the size of intermediate buffers
if factor <= 1:
return [self]
chunk_size = math.ceil(len(self.host_indices) / factor)
split_ops = []
for i in range(0, len(self.host_indices), chunk_size):
split_ops.append(
CacheOperation(
host_indices=self.host_indices[i : i + chunk_size],
device_indices=self.device_indices[i : i + chunk_size],
node_id=0,
)
)
# Inherit the node_ids on the final chunk
if split_ops:
split_ops[-1].node_ids = self.node_ids
return split_ops
def __lt__(self, other: "CacheOperation"):
return self.priority < other.priority
class TransferBuffer:
"""
Overlapping buffer preparation and transfer operations to improve throughput.
"""
def __init__(
self, stop_event, buffer_count: int = 3, max_buffer_size: int = 1000
) -> None:
self.stop_event = stop_event
self.buffers = Queue(maxsize=buffer_count)
# todo: adjust the buffer size based on throughput profile of the system
self.max_buffer_size = max_buffer_size
def full(self) -> bool:
return self.buffers.full()
def empty(self) -> bool:
return self.buffers.empty()
def put(self, item, block=True, timeout=1) -> None:
while not self.stop_event.is_set():
try:
self.buffers.put(item, block=block, timeout=timeout)
break
except Full:
if not block:
break
continue
except Exception as e:
logger.error(e)
def get(self, block=True, timeout=1) -> Optional[CacheOperation]:
try:
return self.buffers.get(block=block, timeout=timeout)
except Empty:
return None
except Exception as e:
logger.error(e)
def clear(self):
self.buffers.queue.clear()
class HiCacheController:
def __init__(
self,
token_to_kv_pool_allocator: TokenToKVPoolAllocator,
mem_pool_host: HostKVCache,
load_cache_event: threading.Event = None,
write_policy: str = "write_through_selective",
):
self.mem_pool_device_allocator = token_to_kv_pool_allocator
self.mem_pool_device = token_to_kv_pool_allocator.get_kvcache()
self.mem_pool_host = mem_pool_host
self.write_policy = write_policy
self.load_cache_event = load_cache_event
self.layer_done_counter = LayerDoneCounter(self.mem_pool_device.layer_num)
self.mem_pool_device.register_layer_transfer_counter(self.layer_done_counter)
if write_policy not in [
"write_through",
"write_through_selective",
"write_back",
]:
raise ValueError(f"Invalid write policy: {write_policy}")
self.write_queue = PriorityQueue()
self.load_queue = PriorityQueue()
self.ack_write_queue = Queue()
self.ack_load_queue = Queue()
self.stop_event = threading.Event()
self.write_buffer = TransferBuffer(self.stop_event)
self.load_buffer = TransferBuffer(
self.stop_event, buffer_count=10, max_buffer_size=100
)
self.write_stream = torch.cuda.Stream()
self.load_stream = torch.cuda.Stream()
self.write_thread = threading.Thread(
target=self.write_thread_func_buffer, daemon=True
)
self.load_thread = threading.Thread(
target=self.load_thread_func_layer_by_layer, daemon=True
)
self.write_thread.start()
self.load_thread.start()
def reset(self):
self.stop_event.set()
self.write_thread.join()
self.load_thread.join()
self.write_queue.queue.clear()
self.load_queue.queue.clear()
self.write_buffer.clear()
self.load_buffer.clear()
self.ack_write_queue.queue.clear()
self.ack_load_queue.queue.clear()
self.write_thread = threading.Thread(
target=self.write_thread_func_buffer, daemon=True
)
self.load_thread = threading.Thread(
target=self.load_thread_func_layer_by_layer, daemon=True
)
self.stop_event.clear()
self.write_thread.start()
self.load_thread.start()
def write(
self,
device_indices: torch.Tensor,
priority: Optional[int] = None,
node_id: int = 0,
) -> Optional[torch.Tensor]:
"""
Back up KV caches from device memory to host memory.
"""
host_indices = self.mem_pool_host.alloc(len(device_indices))
if host_indices is None:
return None
self.mem_pool_host.protect_write(host_indices)
self.write_queue.put(
CacheOperation(host_indices, device_indices, node_id, priority)
)
return host_indices
def load(
self,
host_indices: torch.Tensor,
priority: Optional[int] = None,
node_id: int = 0,
) -> Optional[torch.Tensor]:
"""
Load KV caches from host memory to device memory.
"""
device_indices = self.mem_pool_device_allocator.alloc(len(host_indices))
if device_indices is None:
return None
self.mem_pool_host.protect_load(host_indices)
# to ensure the device indices are ready before accessed by another CUDA stream
torch.cuda.current_stream().synchronize()
self.load_queue.put(
CacheOperation(host_indices, device_indices, node_id, priority)
)
return device_indices
def write_thread_func_direct(self):
"""
Directly write through KV caches to host memory without buffering.
"""
with torch.cuda.stream(self.write_stream):
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
operation.data = self.mem_pool_device.get_flat_data(
operation.device_indices
)
self.mem_pool_host.transfer(operation.host_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_write_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)
def load_thread_func_direct(self):
"""
Directly load KV caches from host memory to device memory without buffering.
"""
with torch.cuda.stream(self.load_stream):
while not self.stop_event.is_set():
try:
operation = self.load_queue.get(block=True, timeout=1)
# time.sleep(18e-6 * len(operation.host_indices))
operation.data = self.mem_pool_host.get_flat_data(
operation.host_indices
)
self.mem_pool_device.transfer(
operation.device_indices, operation.data
)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)
def load_thread_func_layer_by_layer(self):
"""
Load KV caches from host memory to device memory layer by layer.
"""
with torch.cuda.stream(self.load_stream):
while not self.stop_event.is_set():
self.load_cache_event.wait(timeout=1)
if not self.load_cache_event.is_set():
continue
self.load_cache_event.clear()
batch_operation = None
while self.load_queue.qsize() > 0:
op = self.load_queue.get(block=True)
if batch_operation is None:
batch_operation = op
else:
batch_operation.merge(op)
if batch_operation is None:
continue
self.layer_done_counter.reset()
for i in range(self.mem_pool_host.layer_num):
flat_data = self.mem_pool_host.get_flat_data_by_layer(
batch_operation.host_indices, i
)
self.mem_pool_device.transfer_per_layer(
batch_operation.device_indices, flat_data, i
)
self.layer_done_counter.increment()
self.mem_pool_host.complete_io(batch_operation.host_indices)
for node_id in batch_operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
def write_aux_func(self, no_wait=False):
"""
Auxiliary function to prepare the buffer for write operations.
"""
def _to_op(op_):
assert op_.device_indices.is_cuda, "Device indices should be on GPU"
op_.data = self.mem_pool_device.get_flat_data(op_.device_indices).to(
self.mem_pool_host.device
)
self.write_buffer.put(op_)
return op_
buffer = None
with torch.cuda.stream(self.write_stream):
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
factor = (
len(operation.device_indices)
// self.write_buffer.max_buffer_size
)
if factor >= 1:
if buffer is not None:
_to_op(buffer)
buffer = None
if factor < 2:
_to_op(operation)
else:
split_ops = operation.split(factor)
for op_ in split_ops:
_to_op(op_)
continue
if buffer is None:
buffer = operation
else:
buffer.merge(operation)
if (
no_wait
or len(buffer.host_indices) >= self.write_buffer.max_buffer_size
or self.write_queue.empty()
or self.write_buffer.empty()
):
_to_op(buffer)
buffer = None
except Empty:
continue
except Exception as e:
logger.error(e)
def load_aux_func(self):
"""
Auxiliary function to prepare the buffer for load operations.
"""
def _pin_op(op_, put=True):
op_.data = (
self.mem_pool_host.get_flat_data(op_.host_indices)
.contiguous()
.pin_memory()
)
if put:
self.load_buffer.put(op_)
return op_
buffer = None
while not self.stop_event.is_set():
try:
operation = self.load_queue.get(block=True, timeout=1)
factor = len(operation.host_indices) // self.load_buffer.max_buffer_size
if factor >= 1:
if buffer is not None:
_pin_op(buffer)
buffer = None
if factor < 2:
_pin_op(operation)
else:
split_ops = operation.split(factor)
split_args = [(op_, True) for op_ in split_ops[:-1]]
split_args.append((split_ops[-1], False))
# Spawn threads to pin each op concurrently
with concurrent.futures.ThreadPoolExecutor() as executor:
pinned_ops = list(
executor.map(
lambda x: _pin_op(x[0], put=x[1]), split_args
)
)
# preserve the order of last op to ensure correct ack
self.load_buffer.put(pinned_ops[-1])
continue
if buffer is None:
buffer = operation
else:
buffer.merge(operation)
if (
len(buffer.host_indices) >= self.load_buffer.max_buffer_size
or self.load_queue.empty()
or self.load_buffer.empty()
):
_pin_op(buffer)
buffer = None
except Empty:
continue
except Exception as e:
logger.error(e)
def write_thread_func_buffer(self):
aux_thread = threading.Thread(target=self.write_aux_func, daemon=True)
aux_thread.start()
while not self.stop_event.is_set():
operation = self.write_buffer.get()
if operation is None:
continue
self.mem_pool_host.assign_flat_data(operation.host_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_write_queue.put(node_id)
aux_thread.join()
def load_thread_func_buffer(self):
aux_thread = threading.Thread(target=self.load_aux_func, daemon=True)
aux_thread.start()
with torch.cuda.stream(self.load_stream):
while not self.stop_event.is_set():
operation = self.load_buffer.get()
if operation is None:
continue
self.mem_pool_device.transfer(operation.device_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
aux_thread.join()
def evict_device(
self, device_indices: torch.Tensor, host_indices: torch.Tensor
) -> int:
if self.mem_pool_host.is_synced(host_indices):
self.mem_pool_device_allocator.free(device_indices)
self.mem_pool_host.update_backup(host_indices)
return len(device_indices)
else:
raise ValueError(
f"Inconsistent states: {self.mem_pool_host.get_state(host_indices)}"
)
def evict_host(self, host_indices: torch.Tensor, backup_only: bool = True) -> int:
if not backup_only:
raise ValueError("Other eviction policies are not supported yet.")
if self.mem_pool_host.is_backup(host_indices):
self.mem_pool_host.free(host_indices)
return len(host_indices)
else:
raise ValueError(
f"Inconsistent states: {self.mem_pool_host.get_state(host_indices)}"
)